設(shè)an(n∈N*,n≥2)是(4-2x)n的展開式中x2項的系數(shù),則++…+的值為( )
A.
B.
C.
D.
【答案】分析:=,知++…+=2(++…+),再由裂項求和法能求出++…+的值.
解答:解:∵an(n∈N*,n≥2)是(4-2x)n的展開式中x2項的系數(shù),
=,
++…+=4×++…+
=2(++…+
=2(1-++…+
=2×(1-
=,
故選A.
點評:本題考查數(shù)列求和,解題時要認真審題,仔細解答,注意二項式定理和裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n的項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為常數(shù),m≠-3且m≠0
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且b1=a1=1,bn=
3
2
f(bn-1)
(n∈N*,n≥2),求證{
1
bn
}
為等差數(shù)列,并求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:an(n∈N*)是整數(shù),且an+1-an是關(guān)于x的方程x2+(an+1-2)x-2an+1=0的根.
(1)若a1=4且n≥2時,4≤an≤8求數(shù)列{an}的前100項和S100;
(2)若a1=-8,a6=1且an<an+1(n∈N*)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={a1 , a2 , … , an}⊆M(n∈N* , n≥2),若a1+a2+…+an=a1a2…an,則稱集合A是集合M的n元“好集”.
(1)寫出實數(shù)集R上的一個二元“好集”;
(2)是否存在正整數(shù)集合N*上的二元“好集”?說明理由;
(3)求出正整數(shù)集合N*的所有三元“好集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},若定義一種新運算:△an=an+1-an(n∈N+),則稱{△an}為數(shù)列{an}的一階差分數(shù)列;類似地,對正整數(shù)k,定義:△kan=△k-1an+1-△k-1an=△(△k-1an),則稱{△kan}為數(shù)列{an}的k階差分數(shù)列.
(1)若數(shù)列{an}的通項公式為an=5n2+3n(n∈N+),則{△an},{△2an}是什么數(shù)列?
(2)若數(shù)列{an}的首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N+),設(shè)數(shù)列{an}的前n項和為Sn,求{an}的通項公式及
lim
n→∞
Sn+n-2
n•3n
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安慶模擬)已知數(shù)列{an} 中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4,…)
(1)求a3、a4的值;
(2)設(shè)bn=
1
an+1
-1
(n∈N*),試用bn表示bn+1并求{bn} 的通項公式;
(3)設(shè)cn=
sin3
cosbn•cosbn+1
(n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案