(1)求證:an=n-1;
(2)求bn的表達式;
(3)cn=-an·bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.
(1)證明:y=a·b=x2+(n+4)x-3,因為對稱軸x=,所以在[0,1]上為增函數(shù).
所以an=(-3)+(n+2)=n-1.
(2)解:由nb1+(n-1)b2+…+2bn-1+bn=()n-1+()n-2+…++1,
得(n-1)b1+(n-2)b2+…+bn-1=()n-2+()n-3+…++1,
兩式相減,得b1+b2+…+bn-1+bn=()n-1=Sn,
當n=1時,b1=S1=1;
當n≥2時,bn=Sn-Sn-1=()n-2,
即bn=
(3)解:由(1)與(2)得
cn=-an·bn=
設存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立,
當n=1時,c2-c1=>0c2>c1.
當n≥2時,cn+1-cn=()n-2·,
所以當n<5時,cn+1>cn;
當n=5時,cn+1=cn;
當n>5時,cn+1<cn.
所以存在正整數(shù)k=5,使得對于任意的正整數(shù)n,都有cn≤ck成立.
科目:高中數(shù)學 來源: 題型:
a |
b |
a |
b |
9 |
10 |
9 |
10 |
9 |
10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
A.(-,-5)B.(-1,-2)C.(,5)D.(1,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com