【題目】已知拋物線C: ,點 在x軸的正半軸上,過點M的直線 與拋物線C相交于A,B兩點,O為坐標原點.
(1)若 ,且直線 的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點M,使得不論直線 繞點M如何轉(zhuǎn)動, 恒為定值?
【答案】
(1)解:當(dāng) 時, ,此時,點M為拋物線C的焦點,
直線 的方程為 ,設(shè) ,聯(lián)立 ,
消去y得, ,∴ , ,∴圓心坐標為 .
又 ,∴圓的半徑為4,∴圓的方程為
(2)解:由題意可設(shè)直線 的方程為 ,則直線 的方程與拋物線C: 聯(lián)立,
消去x得: ,則 , ,
對任意 恒為定值,
于是 ,此時 .
∴存在定點 ,滿足題意
【解析】(1)根據(jù)條件可求出直線l的方程,將直線方程與拋物線方程聯(lián)立后,利用韋達定理可得出以A、B為直徑的圓的半徑、圓心坐標,寫出圓的方程即可。
(2)根據(jù)條件設(shè)出直線l的方程,與拋物線方程聯(lián)立后表示出A、B坐標,代入給出的式子、化簡后得到=,則即k=2試該式恒為定值。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動點 到點 的距離與點 到 x 軸的距離的差等于1.
(1)求動點 的軌跡 的方程;
(2)過點 作兩條斜率存在且互相垂直的直線 ,設(shè) 與軌跡 相交于點 , 與軌跡 相交于點 ,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:①若,則;②若,則;③若,則;④若, 且,則的最小值為9;其中正確命題的序號是______(將你認為正確的命題序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是( )
A.命題“若 ,則 ”的逆命題為“若 ,則 ”
B.對于命題 ,使得 ,則 ,則
C.“ ”是“ ”的充分不必要條件
D.若 為假命題,則 均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 中,底面ABCD為矩形,側(cè)面PAD為正三角形,且平面 ABCD平面, E為PD中點, AD=2.
(Ⅰ)求證:平面 平面PCD;
(Ⅱ)若二面角 的平面角大小 滿足 ,求四棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標系中,已知圓 的圓心 ,半徑 .
(1)求圓 的極坐標方程;
(2)若 ,直線 的參數(shù)方程為 為參數(shù)),直線 交圓 于 兩點,求弦長 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,它的前n項和為Sn,若S5=70,且a2,a7,a22成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列的前n項和為Tn,求證: ≤Tn<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個圓錐的底面半徑為2,高為6,在其中有一個高為x的內(nèi)接圓柱.
(1)用x表示圓柱的軸截面面積S;
(2)當(dāng)x為何值時,S最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com