【題目】已知定點(diǎn),動(dòng)點(diǎn)P是圓M上的任意一點(diǎn),線段NP的垂直平分線和半徑MP相交于點(diǎn)Q

的值,并求動(dòng)點(diǎn)Q的軌跡C的方程;

若圓的切線l與曲線C相交于AB兩點(diǎn),求面積的最大值.

【答案】(1);(2)3

【解析】

推導(dǎo)出為定值根據(jù)橢圓定義得動(dòng)點(diǎn)Q的軌跡是以點(diǎn)M、N為焦點(diǎn)的橢圓,即,,由此能求出點(diǎn)Q的軌跡C的方程.

設(shè)切線方程為,由直線與圓相切,得,得:,利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式,結(jié)合已知條件能求出的面積最大值.

解:由已知條件得,又,為定值.

根據(jù)橢圓定義得動(dòng)點(diǎn)Q的軌跡是以點(diǎn)M、N為焦點(diǎn)的橢圓.

,即,

點(diǎn)Q的軌跡C的方程為:

直線l不可能與x軸平行,則可設(shè)切線方程為,

由直線與圓相切,得,

設(shè),,

,消去x得:

,

,

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

此時(shí),又

,時(shí),的面積最大,最大值為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為邊長(zhǎng)為2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,點(diǎn)F為棱PD的中點(diǎn).

(1)在棱AB上是否存在一點(diǎn)E,使得AF∥面PCE,并說(shuō)明理由;

(2)當(dāng)二面角D﹣FC﹣B的余弦值為時(shí),求直線PB與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,過(guò)且垂直于軸的焦點(diǎn)弦的弦長(zhǎng)為,過(guò)的直線交橢圓兩點(diǎn),且的周長(zhǎng)為.

(1)求橢圓的方程;

(2)已知直線,互相垂直,直線過(guò)且與橢圓交于點(diǎn),兩點(diǎn),直線過(guò)且與橢圓交于,兩點(diǎn).求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題;命題函數(shù)在區(qū)間上有零點(diǎn).

1)當(dāng)時(shí),若為真命題,求實(shí)數(shù)的取值范圍;

2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的上、下焦點(diǎn)分別為,,右頂點(diǎn)為B,且滿足

求橢圓的離心率e;

設(shè)P為橢圓上異于頂點(diǎn)的點(diǎn),以線段PB為直徑的圓經(jīng)過(guò)點(diǎn),問(wèn)是否存在過(guò)的直線與該圓相切?若存在,求出其斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率,左、右焦點(diǎn)分別為, ,點(diǎn)滿足: 在線段的中垂線上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若斜率為)的直線軸、橢圓順次相交于點(diǎn)、、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形,,且底面.

(1)證明:平面平面

(2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)某校夏令營(yíng)有3名男同學(xué)A、BC3名女同學(xué)X、Y、Z,其年級(jí)情況如下表:

一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)

①用表中字母列舉出所有可能的結(jié)果;

②設(shè)M為事件選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué),求事件M發(fā)生的概率.

2)節(jié)日前夕,小李在家門(mén)前的樹(shù)上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過(guò)2秒的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案