19.在復平面內(nèi),復數(shù)$z=\frac{2i}{1-i}$對應的點的坐標為( 。
A.(1,-1)B.(1,1)C.(-1,1)D.(-1,-1)

分析 利用復數(shù)的運算法則、幾何意義即可得出.

解答 解:復數(shù)$z=\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}$=i-1對應的點的坐標為(-1,1).
故選:C.

點評 本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知復數(shù)z滿足$z=\frac{1+2i}{{{{(1-i)}^2}}}$,則在復平面內(nèi)復數(shù)$\overline z$對應的點為( 。
A.$(-1,-\frac{1}{2})$B.$(1,-\frac{1}{2})$C.$(-\frac{1}{2},1)$D.$(-\frac{1}{2},-1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.第31屆夏季奧林匹克運動會于2016年8月5日至21日在巴西里約熱內(nèi)盧舉行,為了選拔某個項目的奧運會參賽隊員,共舉行5次達標測試,選手如果通過2次達標測試即可參加里約奧運會,不用參加其余的測試,而每個選手最多只能參加5次測試,假設某個選手每次通過測試的概率都是$\frac{1}{3}$,每次測試通過與是相互獨立.規(guī)定:若前4次都沒有通過測試,則第5次不能參加測試.
(1)求該選手能夠參加本屆奧運會的概率;
(2)記該選手參加測試的次數(shù)為X,求隨機變量X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)是R上的奇函數(shù),則“x1+x2=0”是“f(x1)+f(x2)=0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,三棱錐P-ABC,側(cè)棱PA=2,底面三角形ABC為正三角形,邊長為2,頂點P在平面ABC上的射影為D,有AD⊥DB,且DB=1.
(Ⅰ)求證:AC∥平面PDB;
(Ⅱ)求二面角P-AB-C的余弦值;
(Ⅲ)線段PC上是否存在點E使得PC⊥平面ABE,如果存在,求$\frac{CE}{CP}$的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.雙曲線${x^2}-\frac{y^2}{9}=1$的實軸長為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選課意向進行調(diào)查(調(diào)查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.圖中,課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學類課程.為進一步研究學生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學營活動,學校要求:參加活動的學生只能是“組M”中選擇F課程或G課程的同學,并且這些同學以自愿報名繳費的方式參加活動.選擇F課程的學生中有x人參加科學營活動,每人需繳納2000元,選擇G課程的學生中有y人參加該活動,每人需繳納1000元.記選擇F課程和G課程的學生自愿報名人數(shù)的情況為(x,y),參加活動的學生繳納費用總和為S元.
(ⅰ)當S=4000時,寫出(x,y)的所有可能取值;
(ⅱ)若選擇G課程的同學都參加科學營活動,求S>4500元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知等比數(shù)列{an},且a6+a8=4,則a8(a4+2a6+a8)的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.將一條均勻木棍隨機折成兩段,則其中一段大于另一段三倍的概率為(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習冊答案