3.下列四個函數(shù)中,在區(qū)間[-1,1]上是增函數(shù)的是(  )
A.y=2xB.y=x2C.y=log2xD.y=sin2x

分析 逐一分析給定的四個函數(shù)在區(qū)間[-1,1]上的單調(diào)性,可得答案.

解答 解:函數(shù)y=2x在區(qū)間[-1,1]上是增函數(shù),滿足條件;
函數(shù)y=x2在區(qū)間[-1,0]上是減函數(shù),不滿足條件;
函數(shù)y=log2x在區(qū)間[-1,0上是無意義,不滿足條件;
函數(shù)y=sin2x在區(qū)間[-$\frac{π}{2}$,0]和[$\frac{π}{2}$,2]上是減函數(shù),不滿足條件;
故選:A

點評 本題考查的知識點是函數(shù)的單調(diào)性的判斷與證明,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{x-y-3≤0}\end{array}\right.$則目標函數(shù)z=2x+y的最大值為7.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.集合A={x|$\frac{1}{2}$<2x≤4},則 A∩Z={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.下列命題:
①偶函數(shù)的圖象一定與y軸相交;  
 ②定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函數(shù)又不是偶函數(shù);
④f(x)=$\frac{1}{x}$在(-∞,0)∪(0,+∞)上是減函數(shù).其中真命題的序號是②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.過點M(2,2)的直線與拋物線L:x2=2py相交于不同兩點A,B,若點M恰為線段AB的中點,則實數(shù)p的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.(1,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax
(Ⅰ)當a=2時,求函數(shù)f(x)的極值;
(Ⅱ)當a<0時,討論f(x)的單調(diào)性;
(Ⅲ)若對任意的a∈(-3,-2),x1,x2∈[1,3]恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1焦點在x軸上,其中a=6,e=$\frac{1}{3}$,求橢圓的標準方程;
(2)已知橢圓C的長軸長為10,焦距為6,求橢圓C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(x,0),$\overrightarrow$=(1,y),且($\overrightarrow{a}$+$\sqrt{3}$$\overrightarrow$)⊥($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$).
(1)求點P(x,y)的軌跡C的方程;
(2)若直線y=kx+m(k≠0)與曲線C交于A,B兩點,D(0,-1),且|AD|=|DB|,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設函數(shù)f(x)=ax2+bx+3a+b的圖象關于y軸對稱,且其定義域為[a-1,2a](a,b∈R),則函數(shù)f(x)的單調(diào)減區(qū)間為[$-\frac{2}{3}$,0].

查看答案和解析>>

同步練習冊答案