在三角形ABC中,AB、BC、CA的長分別為c、a、b且b=4,c=5,∠A=45°,則
AB
CA
=
-10
2
-10
2
分析:
AB
CA
=-
AB•
AC
,代入已知條件可得答案.
解答:解:
AB
CA
=-
AB•
AC
=-|
AB
||
AC
|cos∠A
=-5×4×cos45°=-10
2
,
故答案為:-10
2
點評:本題考查平面向量數(shù)量積的運算,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,若bcosC=(2a-c)cosB
(Ⅰ)求∠B的大小
(Ⅱ)若b=
7
、a+c=4,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,a=2,C=
π
4
,cos
B
2
=
2
5
5
,則三角形ABC的面積S=
8
7
8
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,A=60°,a=4
3
,b=4
2
,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,A=60°,a=15,b=10則sinB=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=4
3
sin
x
2
cos
x
2
-4sin2
x
2
+2.
(1)化簡f(x)并求函數(shù)的周期
(2)在三角形ABC中,a,b,c分別是角A,B,C所對的邊,對定義域內任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步練習冊答案