【題目】已知直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為正方形,AA1=2AB,E為AA1的中點,則異面直線BE與CD1所成角的余弦值為( )
A.
B.
C.
D.
【答案】C
【解析】解:∵直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為正方形,AA1=2AB,E為AA1的中點,
∴以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
設AB=1,則B(1,1,0),E(1,0,1),C(0,1,0),D1(0,0,2),
=(0,﹣1,1), =(0,﹣1,2),
設異面直線BE與CD1所成角為θ,
則cosθ= = = .
∴異面直線BE與CD1所成角的余弦值為 .
故選:C.
【考點精析】認真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系).
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={(x,y)|(x﹣4)2+y2=1},B={(x,y)|(x﹣t)2+(y﹣at+2)2=1},如果命題“t∈R,A∩B≠”是真命題,則實數(shù)a的取值范圍是( )
A.[1,4]
B.[0, ]
C.[0, ]
D.(﹣∞,0]∪( ,+∞]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解一個英語教改實驗班的情況,舉行了一次測試,將該班30位學生的英語成績進行統(tǒng)計,得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求出該班學生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(2)從成績低于80分的學生中隨機抽取2人,規(guī)定抽到的學生成績在[50,60)的記1績點分,在[60,80)的記2績點分,設抽取2人的總績點分為ξ,求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|.
(1)若f(x)≤m的解集為{x|﹣1≤x≤5},求實數(shù)a,m的值.
(2)當a=2且0≤t<2時,解關于x的不等式f(x)+t≥f(x+2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為16分)設A,B分別為橢圓的左、右頂點,橢圓的長軸長為,且點在該橢圓上.
(1)求橢圓的方程;
(2)設為直線上不同于點的任意一點,若直線與橢圓相交于異于的點,證明:△為鈍角三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線 ﹣ =1與直線y=2x+m有兩個交點,則m的取值范圍是( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)設個正數(shù)滿足(且).
(1)當時,證明:;
(2)當時,不等式也成立,請你將其推廣到(且)個正數(shù)的情形,歸納出一般性的結論并用數(shù)學歸納法證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cos2x, sinx), =(1,cosx),函數(shù)f(x)=2 +m,且當x∈[0, ]時,f(x)的最小值為2.
(1)求m的值,并求f(x)圖象的對稱軸方程;
(2)設函數(shù)g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ +1(a>0,ω>0)的最大值為3,最小正周期為π.
(1)求函數(shù)f(x)的單調遞增區(qū)間.
(2)若f(θ)= ,求sin(4θ+ )的值.
(3)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個零點,在滿足上述條件的[a,b]中,求b﹣a的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com