【題目】若函數(shù),,對任意的,總存在,使得,則稱函數(shù)具有性質(zhì)

(1)判斷函數(shù)是否具有性質(zhì),說明理由;

(2)若函數(shù)具有性質(zhì),求的值;

(3)若函數(shù))在實(shí)數(shù)集上具有性質(zhì),求的取值范圍.

【答案】(1) 具有性質(zhì)不具有性質(zhì),理由見詳解;(2);(3).

【解析】

1)對函數(shù)根據(jù)性質(zhì)的定義容易證明;對函數(shù)只需舉反例即可說明;

2)根據(jù)函數(shù)的單調(diào)性,結(jié)合性質(zhì)的定義,解方程即可求得;

3)一方面要保證函數(shù)的定義域?yàn)?/span>,另一方面要保證性質(zhì),據(jù)此列不等式組求解即可.

1)函數(shù)的定義域?yàn)?/span>,又

,則,

對任意的,總存在,使得

故函數(shù)具有性質(zhì).

函數(shù)的定義域?yàn)?/span>,

,則,不存在

使得,

不具有性質(zhì).

2)因?yàn)?/span>是單調(diào)增函數(shù),

若其具有性質(zhì),只需

解得,故.

3等價(jià)于

因?yàn)?/span>,要使得函數(shù))在實(shí)數(shù)集上具有性質(zhì)

則一方面要保證函數(shù)定義域?yàn)?/span>,

則只需要分母不為零,在上恒成立,故,解得;

另一方面要保證關(guān)于的方程有兩個(gè)不同實(shí)數(shù)根,

,解得.

綜上所述:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為普及學(xué)生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.

分?jǐn)?shù)(分?jǐn)?shù)段)

頻數(shù)(人數(shù))

頻率

合計(jì)

(1)求表中,,的值;

(2)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進(jìn)入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為,直線過定點(diǎn),斜率為,為何值時(shí),直線與拋物線

1)只有一個(gè)公共點(diǎn);

2)有兩個(gè)公共點(diǎn);

3)沒有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在[01]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)fx)稱為G函數(shù).

對任意的x∈[01],總有fx≥0

當(dāng)x1≥0,x2≥0x1+x2≤1時(shí),總有fx1+x2≥fx1+fx2)成立.已知函數(shù)gx=x2hx=2xb是定義在[01]上的函數(shù).

1)試問函數(shù)gx)是否為G函數(shù)?并說明理由;

2)若函數(shù)hx)是G函數(shù),求實(shí)數(shù)b組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

(1)當(dāng)時(shí),寫出直線l的普通方程及曲線C的直角坐標(biāo)方程;

(2)已知點(diǎn),設(shè)直線l與曲線C交于A,B兩點(diǎn),試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為實(shí)數(shù).

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線與曲線有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點(diǎn),點(diǎn)上,且軸.

(1)求的方程;

(2)過的直線兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各人;男性人,女性.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯(cuò)誤的是(

A.是否傾向選擇生育二胎與戶籍有關(guān)

B.是否傾向選擇生育二胎與性別無關(guān)

C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

同步練習(xí)冊答案