【題目】若函數(shù),,對任意的,總存在,使得,則稱函數(shù)具有性質(zhì).
(1)判斷函數(shù)和是否具有性質(zhì),說明理由;
(2)若函數(shù),具有性質(zhì),求的值;
(3)若函數(shù)()在實(shí)數(shù)集上具有性質(zhì),求的取值范圍.
【答案】(1) 具有性質(zhì),不具有性質(zhì),理由見詳解;(2);(3).
【解析】
(1)對函數(shù)根據(jù)性質(zhì)的定義容易證明;對函數(shù)只需舉反例即可說明;
(2)根據(jù)函數(shù)的單調(diào)性,結(jié)合性質(zhì)的定義,解方程即可求得;
(3)一方面要保證函數(shù)的定義域?yàn)?/span>,另一方面要保證性質(zhì),據(jù)此列不等式組求解即可.
(1)函數(shù)的定義域?yàn)?/span>,又
若,則,
對任意的,總存在,使得
故函數(shù)具有性質(zhì).
函數(shù)的定義域?yàn)?/span>,
令,則,不存在,
使得,
故不具有性質(zhì).
(2)因?yàn)?/span>,是單調(diào)增函數(shù),
若其具有性質(zhì),只需
解得,故.
(3)等價(jià)于
故
因?yàn)?/span>,要使得函數(shù)()在實(shí)數(shù)集上具有性質(zhì)
則一方面要保證函數(shù)定義域?yàn)?/span>,
則只需要分母不為零,在上恒成立,故,解得;
另一方面要保證關(guān)于的方程有兩個(gè)不同實(shí)數(shù)根,
故,解得.
綜上所述:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為普及學(xué)生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
合計(jì) |
(1)求表中,,,,的值;
(2)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進(jìn)入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為,直線過定點(diǎn),斜率為,為何值時(shí),直線與拋物線
(1)只有一個(gè)公共點(diǎn);
(2)有兩個(gè)公共點(diǎn);
(3)沒有公共點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為G函數(shù).
①對任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.已知函數(shù)g(x)=x2與h(x)=2x﹣b是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實(shí)數(shù)b組成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)當(dāng)時(shí),寫出直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)已知點(diǎn),設(shè)直線l與曲線C交于A,B兩點(diǎn),試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為實(shí)數(shù).)
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與曲線有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的右焦點(diǎn),點(diǎn)在上,且軸.
(1)求的方程;
(2)過的直線交于兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各人;男性人,女性人.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯(cuò)誤的是( )
A.是否傾向選擇生育二胎與戶籍有關(guān)
B.是否傾向選擇生育二胎與性別無關(guān)
C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com