若函數(shù)y=
ax+1
4x+5
(a≠
4
5
)
的圖象關(guān)于直線y=x對稱,則a=
 
分析:利用關(guān)于y=x對稱的函數(shù)上的每一點關(guān)于y=x的對稱點仍在原函數(shù)的圖象上,任取一點(0,
1
,5
)關(guān)于y=x的對稱點(
1
5
,0
)滿足函數(shù)解析式代入求出a.
解答:解:∵a≠
4
5
,
y=
ax+1
4x+5
不是常函數(shù),且存在反函數(shù).
在f(x)的圖象上取一點(0,
1
5
),
它關(guān)于y=x的對稱點(
1
5
,0)也在函數(shù)f(x)的圖象上,
可解得a=-5.
故答案為-5
點評:本題考查關(guān)于y=x對稱的函數(shù)的反函數(shù)是其本身.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二元一次不等式組
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
所表示的平面區(qū)域為M,若函數(shù)y=ax(a>0
,a≠1)的圖象沒有經(jīng)過區(qū)域M,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下說法正確的是
①②⑤
①②⑤

①在同一坐標(biāo)系中,函數(shù)y=2x的圖象與函數(shù)y=(
1
2
)x
的圖象關(guān)于y軸對稱;
②函數(shù)y=ax+1+1(a>1)的圖象過定點(-1,2);
③函數(shù)f(x)=
1
x
在區(qū)間(-∞,0)∪(0,+∞)上單調(diào)遞減;
④若x1是函數(shù)f(x)的零點,且m<x1<n,則f(m)•f(n)<0;
⑤方程2log3x=
1
4
的解是x=
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+ax與f(x)=bx2+c
(1)若點P(1,0)是函數(shù)與f(x)與g(x)的圖象的一個公共點,且兩函數(shù)的圖象在點P處有相同的切線,求a,b,c
(2)若函數(shù)y=f(x)點(1,f(1))處的切線為1,若l與圓C:x2+y2=
14
相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下說法正確的是______.
①在同一坐標(biāo)系中,函數(shù)y=2x的圖象與函數(shù)y=(
1
2
)x
的圖象關(guān)于y軸對稱;
②函數(shù)y=ax+1+1(a>1)的圖象過定點(-1,2);
③函數(shù)f(x)=
1
x
在區(qū)間(-∞,0)∪(0,+∞)上單調(diào)遞減;
④若x1是函數(shù)f(x)的零點,且m<x1<n,則f(m)•f(n)<0;
⑤方程2log3x=
1
4
的解是x=
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,a≠1,若函數(shù)y=a2x+2·ax-1在[-1,1]上的最大值是14,求a的值.

查看答案和解析>>

同步練習(xí)冊答案