(本小題滿分14分)
一個幾何體是由圓柱和三棱錐組合而成,點(diǎn)、、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,,,.
(1)求證:;
(2)求二面角的平面角的大。
方法1:(1)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bd/3/bgmuh2.gif" style="vertical-align:middle;" />,,所以,即.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/a/mkdsc1.gif" style="vertical-align:middle;" />,,所以平面.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b3/e/d74dm1.gif" style="vertical-align:middle;" />,所以.………………………………………4分
(2)解:因?yàn)辄c(diǎn)、、在圓的圓周上,且,所以為圓的直徑.
設(shè)圓的半徑為,圓柱高為,根據(jù)正(主)視圖、側(cè)(左)視圖的面積可得,
…………………………………………6分
解得
所以,.…………………………………………………………………7分
過點(diǎn)作于點(diǎn),連接,
由(1)知,,,所以平面.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/01/3/kx1fk1.gif" style="vertical-align:middle;" />平面,所以.
所以為二面角的平面角.………………………………9分
由(1)知,平面,平面,
所以,即△為直角三角形.
在△中,,,則.
由,解得.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/5/tw4zw.gif" style="vertical-align:middle;" />.………………………………………………………13分
所以.
所以二面角的平面角大小為.………………………………14分
方法2:(1)證明:因?yàn)辄c(diǎn)、、在圓的圓周上,且,所以為圓的直徑.
設(shè)圓的半徑為,圓柱高為,根據(jù)正(主)視圖、側(cè)(左)視圖的面積可得,
…………………………………………2分
解得
所以,
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分).如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點(diǎn)D、E分別在棱PB、PC的中點(diǎn),且DE∥BC.
(1)求證:DE∥平面ACD
(2)求證:BC⊥平面PAC;
(3)求AD與平面PAC所成的角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在梯形中,∥,,,平面平面,四邊形是矩形,,點(diǎn)在線段上.
(1)求證:平面BCF⊥平面ACFE;
(2)當(dāng)為何值時,∥平面?證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓錐的軸截面ABC是邊長為2的正三角形,O是底面圓心.
(Ⅰ)求圓錐的表面積;
(Ⅱ)經(jīng)過圓錐的高AO的中點(diǎn)O¢作平行于圓錐底面的截面,
求截得的圓臺的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如右圖所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M為AA1的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過棱CC1到M的最短路線長為,設(shè)這條最短路線與CC1的交點(diǎn)為N.求:
(1)該三棱柱的側(cè)面展開圖的對角線長;
(2)PC和NC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在半徑為13的球面上有A,B,C三點(diǎn),AB=6,BC=8,CA=10,求過A,B,C三點(diǎn)的截面與球心的距離。(10分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,四邊形ABCD為正方形,四邊形BDEF為矩形,AB=2BF,E丄平面ABCD,G為EF中點(diǎn).
(1)求證:CF//平面
(2) 求證:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)
一個用鮮花做成的花柱,它的下面是一個直徑為2m、高為4m的圓柱形物體,上面是一個直徑為2m的半球形體,如果每平方米大約需要鮮花200朵,那么裝飾這個花柱大約需要多少朵鮮花(取3.1)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com