函數(shù)f(x)=x-2
1-x
+1的值域為
 
考點:函數(shù)的值域
專題:計算題,函數(shù)的性質(zhì)及應用
分析:利用換元法化簡函數(shù),從而確定函數(shù)的單調(diào)性,再求函數(shù)的值域.
解答: 解:令
1-x
=t,則t≥0,x=1-t2,
則y=1-t2-2t+1
=-t2-2t+2在[0,+∞)上是減函數(shù),
故y≤2,
即函數(shù)f(x)=x-2
1-x
+1的值域為(-∞,2];
故答案為:(-∞,2].
點評:本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導數(shù)求函數(shù)的值域,11、最值法,12、構造法,13、比例法.要根據(jù)題意選擇.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax+1(a>0且a≠1)的圖象恒過點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)(2
1
4
 
1
2
-9.60-(3
3
8
 
2
3
+1.5-2  
(2)-5log94+log3
32
9
-5 log53-(
1
64
 
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x,x≤0
ax,x>0
,若f(1)=f(-1),則實數(shù)a的值等于( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=
(5-m)x+1,(x≤0)
mx+m-1,(x>0)
,若f(x)在(-∞,+∞)上單調(diào)遞增,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ln(2-x-x2)+
1
x+2
的定義域是(  )
A、(-1,2)
B、(-∞,-2)∪(1,+∞)
C、(-2,1)
D、[-2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|x<-2,或x>0},B={x|
1
x
<1},則(∁UA)∩B=(  )
A、(-2,0)B、[-2,0)
C、∅D、(-2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,直線PC與底面ABCD所成的角為45°,E、F分別是BC、PC的中點.
(Ⅰ)證明:AE⊥PD;
(Ⅱ)求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:拋物線y=ax2+(1-a)x+3(a≠0)在(-∞,2]上單調(diào)遞增,求a的范圍.

查看答案和解析>>

同步練習冊答案