【題目】已知數列滿足,,我們知道當a取不同的值時,得到不同的數列.如當時,得到無窮數列:0,,,,…,當時,得到有窮數列:,,1.
(1)當a為何值時,;
(2)設數列滿足,,求證:a取中的任一數,都可以得到一個有窮數列;
(3)是否存在實數a,使得到的是無窮數列,且對于任意,都有成立,若存在,求出a的取值范圍;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.已知曲線的極坐標方程為,射線與曲線交于點,點滿足,設傾斜角為的直線經過點.
(1)求曲線的直角坐標方程及直線的參數方程;
(2)直線與曲線交于、兩點,當為何值時,最大?求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, AD丄AC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為( )
A.7B.12C.6D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,平面,,.
(1)求證:平面;
(2)求異面直線與所成角的大;
(3)點在線段上,且,點在線段上,若平面,求的值(用含的代數式表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,射線的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為.一只小蟲從點沿射線向上以單位/min的速度爬行
(1)以小蟲爬行時間為參數,寫出射線的參數方程;
(2)求小蟲在曲線內部逗留的時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,的焦點為,過點的直線的斜率為,與拋物線交于,兩點,拋物線在點,處的切線分別為,,兩條切線的交點為.
(1)證明:;
(2)若的外接圓與拋物線有四個不同的交點,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數分布表.
購買金額(元) | ||||||
人數 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根據以上數據完成列聯表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.
不少于60元 | 少于60元 | 合計 | |
男 | 40 | ||
女 | 18 | ||
合計 |
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產,請列出實際付款數(元)的分布列并求其數學期望.
附:參考公式和數據:,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com