已知與向量
e
=(1,
3
)平行的直線l1過點A(0,-2
3
),橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的中心關于直線l1的對稱點在直線x=
a2
c
(c2=a2-b2)上,且直線l1過橢圓C的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-2,0)的直線l2交橢圓C于M,N兩點,若∠MON≠
π
2
,且(
OM
ON
)•sin∠MON=
4
6
3
,(O為坐標原點),求直線l12的方程.
解(Ⅰ)由題意得直線l1的方程為y=
3
x-2
3
,①
過原點垂直于l1的直線方程為y=-
3
3
x②
解①②得:x=
3
2

因為橢圓中心O(0,0)關于直線l1的對稱點在直線x=
a2
c
上,
a2
c
=3
又∵直線l1過橢圓焦點,∴該焦點坐標為(2,0),
∴c=2,a2=6,b2=2
故橢圓C的方程為
x2
6
+
y2
2
=1③
(II)當直線l1的斜率存在時,
設直線l1的方程為y=k(x+2),代入③并整理得:
(3k2+1)x2+12k2x+12k2-6=0
設M(x1,y1),N(x2,y2
則x1+x2=-
12k2
3k 2+1
,x1x2=
12k2-6
3k 2+1

∴|MN|=
1+k.2
|x1-x2|=
1+k.2
(x1+x2)2-4x1x2
=
2
6
(1+k2)
3k 2+1

坐標原點O到直線l2的距離d=
|2k|
1+k2

∵(
OM
ON
)•sin∠MON=
4
6
3
,即S△MON=
2
6
3

而S△MON=
1
2
||MN|d
∴|NM|d=
4
6
3
,即
2
6
(1+k2)
3k 2+1
|2k|
1+k2
=
4
6
3

解得k=±
3
3
,此時直線l2的方程為y=±
3
3
(x+2)
當直線l2的斜率不存在時,直線l2的方程為x=-2
此時點M(-2,
6
3
),N(-2,-
6
3
),滿足S△MON=
2
6
3
,
綜上得,直線l2的方程為x=-2或±
3
y+2=0.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知與向量
e
=(1,
3
)平行的直線l1過點A(0,-2
3
),橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的中心關于直線l1的對稱點在直線x=
a2
c
(c2=a2-b2)上,且直線l1過橢圓C的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-2,0)的直線l2交橢圓C于M,N兩點,若∠MON≠
π
2
,且(
OM
ON
)•sin∠MON=
4
6
3
,(O為坐標原點),求直線l12的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題:
(1)|
a
|2=
a
2

(2)
a
b
a
2
=
b
a
;
(3)(
a
b
)2=
a
2
b
2
;
(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2
;
(5)
a
b
?存在唯一的實數(shù)λ∈R,使得
b
a
;
(6)
e
為單位向量,且
a
e
,則
a
=±|
a
|•
e
;
(7)|
a
a
a
|=|
a
|3

(8)
a
b
共線,
b
c
共線,則
a
c
共線;
(9)若
a
b
=
b
c
b
0
,則
a
=
c
;
(10)若
OA
=
a
,
OB
=
b
,
a
b
不共線,則∠AOB平分線上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
確定./
其中正確命題的序號
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知空間向量
a
=(1,1,0),
b
=(-1,0,2),則與向量
a
+
b
方向相反的單位向量
e
的坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年德州市質檢理)(12分)已知與向量平行的直線L 過橢圓C:的焦點以及點(0,-2),橢圓C的中心關于直線L的對稱點在直線

(1)求橢圓C的方程;

(2)過點E(-2,0)的直線m交橢圓C于點M、N且滿足,(O為坐標原點),求直線的方程

查看答案和解析>>

同步練習冊答案