已知圓o:與橢圓有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
(1)求橢圓方程。
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T,使,若存在,請(qǐng)說明理由。


⑵解法一:假設(shè)存在這樣的點(diǎn),使得,則點(diǎn)必定在線段的中垂線上……8分
設(shè)點(diǎn),
①直線斜率存在時(shí),設(shè)直線
,

的中點(diǎn)……………………7分
可知

…………………9分
 且
⑵解法二:
設(shè)點(diǎn)B,由 
,整理得     ……………7分
又∵,∴
當(dāng)時(shí),;
當(dāng)時(shí), 
又∵,∴        ……………10分
又圓O:
綜上可知在線段CD上存在點(diǎn)T,使得       ……………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

. (本小題滿分13分)
設(shè)A,B是橢圓上的兩點(diǎn),為坐標(biāo)原點(diǎn),向量,向量
(1)設(shè),證明:點(diǎn)M在橢圓上;
(2)若點(diǎn)P、Q為橢圓上兩點(diǎn),且試問:線段PQ能否被直線OA平分?若能平分,請(qǐng)加以證明;若不能平分,請(qǐng)證明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題12分)
已知橢圓的一個(gè)頂點(diǎn)為(-2,0),焦點(diǎn)在x軸上,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)斜率為1的直線與橢圓交于A、B兩點(diǎn),O為原點(diǎn),
當(dāng)△AOB的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l3分)
設(shè)橢圓的焦點(diǎn)分別為,直線軸于點(diǎn),且.
(1)試求橢圓的方程;

 

 
  (2)過、分別作互相垂直的兩直線與橢圓分別

       交于、、四點(diǎn)(如圖所示),試求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等腰梯形中,,且。設(shè)以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為,以為焦點(diǎn)且過點(diǎn)的橢圓的離心率為,則=          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中 ,ABAC=1,以點(diǎn)C為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓的另一個(gè)焦點(diǎn)在AB邊上,且這個(gè)橢圓過A、B兩點(diǎn),則這個(gè)橢圓的焦距長(zhǎng)為   ▲       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

 、是橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且∠,則
Δ的面積為(   )
A             B           C          D 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知、是橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且,若的面積為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦距是       ,焦點(diǎn)坐標(biāo)為        ;若CD為過左焦點(diǎn)的弦,則的周長(zhǎng)為     

查看答案和解析>>

同步練習(xí)冊(cè)答案