設(shè)雙曲線與橢圓+=1有公共的焦點,且與橢圓相交,它們的交點中一個交點的縱坐標(biāo)是4,求雙曲線的標(biāo)準(zhǔn)方程。
-=1

試題分析:解:因為橢圓+=1的焦點為F1(0,-3),F(xiàn)2(0,3),故可設(shè)雙曲線方程為
 (a>0,b>0),且c=3,a2+b2=9.由題設(shè)可知雙曲線與橢圓的一個交點的縱坐標(biāo)為4,將y=4代入橢圓方程得雙曲線與橢圓的交點為(,4),(-,4),因為點(,4)[或(-,4)]在雙曲線上,所以有a2+b2=9,可知a2=4, b2=5故可知-=1
點評:本題考查圓錐曲線的共同特征,解題的關(guān)鍵是兩者共同的特征設(shè)出雙曲線的標(biāo)準(zhǔn)方程,解題時要善于抓住問題的關(guān)鍵點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

我們把形如的函數(shù)稱為“莫言函數(shù)”,并把其與軸的交點關(guān)于原點的對稱點稱為“莫言點”,以“莫言點”為圓心凡是與“莫言函數(shù)”圖象有公共點的圓,皆稱之為“莫言圓”.當(dāng),時,在所有的“莫言圓”中,面積的最小值   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線,直線與該雙曲線只有一個公共點,
k =                .(寫出所有可能的取值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點為坐標(biāo)原點,焦點軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點,命題P:“若直線過定點,則”,請判斷命題P的真假,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過拋物線的焦點作傾斜角為的直線交拋物線于、兩點,過點作拋物線的切線軸于點,過點作切線的垂線交軸于點。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線C的方程為y=4x,O為坐標(biāo)原點,P為拋物線的準(zhǔn)線與其對稱軸的交點,過焦點F且垂直于x軸的直線交拋物線于M、N兩點,若直線PM與ON相交于點Q,則cos∠MQN=
A.B.-C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得|=3|.
(1)求橢圓的標(biāo)準(zhǔn)方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的頂點在原點,準(zhǔn)線方程為則拋物線的方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓左焦點F且傾斜角為的直線交橢圓于A、B兩點,若,則橢圓的離心率為(    )
A.              B.              C.                D. 

查看答案和解析>>

同步練習(xí)冊答案