6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)M($\frac{3π}{4}$,0)對(duì)稱,且在區(qū)間[0,$\frac{π}{2}$]上是單調(diào)函數(shù),則ω=$\frac{2}{3}$或2.

分析 根據(jù)正弦、余弦函數(shù)的奇偶性、對(duì)稱性和單調(diào)性,進(jìn)行求解即可.

解答 解:∵f(x)=sin(ωx+φ)是R上的偶函數(shù),0≤φ≤π,
∴φ=$\frac{π}{2}$,
∴f(x)=sin(ωx+$\frac{π}{2}$)=cosωx;
又f(x)圖象關(guān)于點(diǎn)M($\frac{3π}{4}$,0)對(duì)稱,
∴f($\frac{3π}{4}$)=cos($\frac{3π}{4}$ω)=0,
即$\frac{3π}{4}$ω=$\frac{π}{2}$+kπ,k∈Z,
即ω=$\frac{2}{3}$+$\frac{4}{3}$k,k∈Z;
又f(x)在區(qū)間[0,$\frac{π}{2}$]上是單調(diào)函數(shù),
∴$\frac{T}{2}$≥$\frac{π}{2}$,即$\frac{π}{ω}$≥$\frac{π}{2}$,
解得0<ω≤2;
當(dāng)k=0時(shí),ω=$\frac{2}{3}$,
當(dāng)k=1時(shí),ω=2,
∴ω的值為$\frac{2}{3}$或2.
故答案為:$\frac{2}{3}$或2.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,利用三角函數(shù)的單調(diào)性、奇偶性和對(duì)稱性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|$\frac{x-10}{x-1}$≤0},B={y|y=lgx,x∈A},則A∪B=( 。
A.{1}B.C.[0,10]D.(0,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列命題中的真命題為( 。
A.若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實(shí)數(shù)λ,使得$\overrightarrow{a}$=λ$\overrightarrow$
B.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ≤4)=0.79,則P(ξ≤-2)=0.21
C.“φ=$\frac{3π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D.函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等差數(shù)列{an}滿足a1=1,a2+a3=3,則a1+a2+a3+a4+a5+a6+a7=(  )
A.7B.14C.21D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知在數(shù)列{an}中,a1=4,an>0,前n項(xiàng)和為Sn,若${a_n}=\sqrt{S_n}+\sqrt{{S_{n-1}}}(n≥2)$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+acosx$,g(x)是f(x)的導(dǎo)函數(shù).
(1)若f(x)在$(\frac{π}{2},f(\frac{π}{2}))$處的切線方程為$y=\frac{π+2}{2}x-\frac{{{π^2}+4π}}{8}$,求a的值;
(2)若a≥0且f(x)在x=0時(shí)取得最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若平面區(qū)域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夾在兩條平行直線之間,則這兩條平行直線間的距離的最小值是(  )
A.$\frac{{3\sqrt{5}}}{5}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,E,F(xiàn),G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA上的中點(diǎn).
(1)求證:四邊形EFGH為平行四邊形;
(2)求證:直線BD∥平面EFGH;
(3)若AC⊥BD,且AC=12,BD=8,求四邊形EFGH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知復(fù)數(shù)z滿足:z(2-i)=3+i(其中i為虛數(shù)單位),則z的模等于$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案