函數(shù)y=
1
x-1
的定義域是( 。
A、(1,+∞)
B、R
C、(-∞,1)∪(1+∞)
D、(-∞,1)
考點(diǎn):函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.
解答: 解:要使函數(shù)有意義,則x-1>0,
即x>1,
故選:A
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見(jiàn)函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax2+bx+c是定義在[-2a,a+1]的偶函數(shù),則a-b=( 。
A、-1
B、1
C、0
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖框圖輸出的S為( 。
A、15B、17C、26D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x-1(x>0)
0(x=0)
x+1(x<0)
,則f[f(
1
3
)]的值是( 。
A、1
B、
1
2
C、
1
3
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log 
1
2
(4x-2x+1+1)的值域是[0,+∞),則它的定義域可以是(  )
A、(0,1]
B、(0,1)
C、(-∞,1]
D、(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:冪函數(shù)f(x)=
x
在[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱臺(tái)的一條側(cè)棱所在的直線與不含這條側(cè)棱的側(cè)面所在平面的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知拋物線x2=4y,過(guò)定點(diǎn)M0(0,m)(m>0)的直線l交拋物線于A,B兩點(diǎn).
(1)分別過(guò)A,B作拋物線的兩條切線,A,B為切點(diǎn),求證:這兩條切線的交點(diǎn)P(x0,y0)在定直線y=-m上;
(2)當(dāng)m>2時(shí),在拋物線上存在不同的兩點(diǎn)P、Q關(guān)于直線l對(duì)稱(chēng),弦長(zhǎng)|PQ|是否存在最大值?若存在,求其最大值(用m表示),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線經(jīng)過(guò)坐標(biāo)原點(diǎn),并且兩條漸近線與以點(diǎn)A(0,
2
)為圓心、1為半徑的圓相切,雙曲線C的一個(gè)焦點(diǎn)與點(diǎn)A關(guān)于直線y=x對(duì)稱(chēng).
(1)求雙曲線C的漸近線和雙曲線的方程;
(2)設(shè)直線y=mx+1與雙曲線C的左支交于P、Q兩點(diǎn),另一直線l經(jīng)過(guò)M(-2,0)及線段PQ的中點(diǎn)N,求直線l在y軸的截距b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案