(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

(I) 函數(shù)v(x)的表達(dá)式
(II) 當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大值,最大值約為3333輛/小時(shí).

解析試題分析:(I)根據(jù)題意,函數(shù)v(x)表達(dá)式為分段函數(shù)的形式,關(guān)鍵在于求函數(shù)v(x)在20≤x≤200時(shí)的表達(dá)式,根據(jù)一次函數(shù)表達(dá)式的形式,用待定系數(shù)法可求得;
(II)先在區(qū)間(0,20]上,函數(shù)f(x)為增函數(shù),得最大值為f(20)=1200,然后在區(qū)間[20,200]上用基本不等式求出函數(shù)f(x)的最大值,用基本不等式取等號(hào)的條件求出相應(yīng)的x值,兩個(gè)區(qū)間內(nèi)較大的最大值即為函數(shù)在區(qū)間(0,200]上的最大值.
解:(I) 由題意:當(dāng)0≤x≤20時(shí),v(x)=60;當(dāng)20<x≤200時(shí),設(shè)v(x)=ax+b
再由已知得,解得
故函數(shù)v(x)的表達(dá)式為
(II)依題并由(I)可得
當(dāng)0≤x<20時(shí),f(x)為增函數(shù),故當(dāng)x=20時(shí),其最大值為60×20=1200
當(dāng)20≤x≤200時(shí),
當(dāng)且僅當(dāng)x=200﹣x,即x=100時(shí),等號(hào)成立.
所以,當(dāng)x=100時(shí),f(x)在區(qū)間(20,200]上取得最大值
綜上所述,當(dāng)x=100時(shí),f(x)在區(qū)間[0,200]上取得最大值為
即當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大值,最大值約為3333輛/小時(shí).
答:(I) 函數(shù)v(x)的表達(dá)式
(II) 當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大值,最大值約為3333輛/小時(shí).
點(diǎn)評(píng):本題主要考查函數(shù)、最值等基礎(chǔ)知識(shí),同時(shí)考查運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某房地產(chǎn)開發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬分別為4m和10m(如圖所示).
(1)若設(shè)休閑區(qū)的長(zhǎng)和寬的比,求公園ABCD所占面積S關(guān)于x的函數(shù)解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬應(yīng)如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有一種密英文的明文(真實(shí)文)按字母分解,其中英文的a,b,c, ,z的26個(gè)字母(不分大小寫),依次對(duì)應(yīng)1,2,3, ,26這26個(gè)自然數(shù),見如下表格:

a
b
c
d
e
f
g
h
i
j
k
l
m
1
2
3
4
5
6
7
8
9
10
11
12
13
n
o
p
q
r
s
t
u
v
w
x
y
z
14
15
16
17
18
19
20
21
22
23
24
25
26
 
給出如下變換公式:

將明文轉(zhuǎn)換成密文,如,即變成;如,即變成.
(1)按上述規(guī)定,將明文譯成的密文是什么?
(2)按上述規(guī)定,若將某明文譯成的密文是,那么原來的明文是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足對(duì)任意的恒有,且當(dāng)時(shí),.
(1)求的值;
(2)判斷的單調(diào)性
(3)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn).已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線y=kx+對(duì)稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=3x.
(1)若f(x)=2,求x的值;
(2)判斷x>0時(shí),f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對(duì)于t∈恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某加油站擬造如圖所示的鐵皮儲(chǔ)油罐(不計(jì)厚度,長(zhǎng)度單位:米),其中儲(chǔ)油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設(shè)該儲(chǔ)油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為千元,半球形部分每平方米建造費(fèi)用為3千元.設(shè)該儲(chǔ)油罐的建造費(fèi)用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該儲(chǔ)油罐的建造費(fèi)用最小時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案