分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)根據(jù)a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出在[0,2]上的零點(diǎn)個(gè)數(shù)即可.
解答 解:(1)f′(x)=a(x-1)(x-$\frac{1}{a}$),
∵a<0,∴$\frac{1}{a}$<1,
令f′(x)>0,解得:$\frac{1}{a}$<x<1,
令f′(x)<0,解得:x>1或x<$\frac{1}{a}$,
∴f(x)在(-∞,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,1)遞增,在(1,+∞)遞減,
∴f(x)極小值=f($\frac{1}{a}$)=$\frac{-{2a}^{2}+3a-1}{{6a}^{2}}$,f(x)極大值=f(1)=-$\frac{1}{6}$(a-1);
(2)f(1)=-$\frac{1}{6}$(a-1),f(2)=$\frac{1}{3}$(2a-1),f(0)=-$\frac{1}{3}$<0,
a≤$\frac{1}{2}$時(shí),f(x)在[0,1]遞增,在[1,2]遞減,
故f(0)=-$\frac{1}{3}$<0,f(1)=-$\frac{1}{6}$(a-1)>0,f(2)=$\frac{1}{3}$(2a-1)≤0,
∴f(x)在[0,1],(1,2]上各有1個(gè)零點(diǎn),
即在[0,2]上2個(gè)零點(diǎn).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的零點(diǎn)問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 84 | C. | 52 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1,2} | B. | {-1,0,1} | C. | {0,1} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (6,-2) | B. | (5,0) | C. | (-5,0) | D. | (0,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com