若函數(shù)f(x)的定義域?yàn)閇2,16],則y=f(x)+f(2x)的定義域?yàn)椋ā 。?/div>
A、[2,16]
B、[1,8]
C、[1,16]
D、[2,8]
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義域的范圍得不等式組,解出即可.
解答: 解:由題意得:
2≤x≤16
2≤2x≤16
,
解得:2≤x≤8,
故選:D.
點(diǎn)評:本題考查了函數(shù)的定義域問題,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=cosx的圖象上所有點(diǎn)向左平移
π
3
個單位,再把所得圖象上各點(diǎn)橫坐標(biāo)擴(kuò)大到原來的2倍,則所得到的圖象的解析式為( 。
A、y=cos(
x
2
-
π
3
B、y=cos(
x
2
+
π
6
C、y=cos(
x
2
+
π
3
D、y=cos(2x+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=4cos(
2
5
x+
6
)的最小正周期是(  )
A、5π
B、2π
C、
2
5
π
D、
5
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|2x2-2x<1},N={x|y=lg(4-x2)},則( 。
A、M∪N=M
B、(∁RM)∩N=R
C、(∁RM)∩N=∅
D、M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列等式成立的是( 。
A、sin
π
3
=
1
2
B、cos
6
=-
1
2
C、sin(-
6
)=
1
2
D、tan
3
=
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:mx-(m2+1)y=4m(m≥0)和圓C:x2+y2-8x+4y+16=0.有以下幾個結(jié)論:
①直線l的傾斜角不是鈍角;
②直線l必過第一、三、四象限;
③直線l能將圓C分割成弧長的比值為
1
2
的兩段圓;
④直線l與圓C相交的最大弦長為
4
5
5

其中正確的是
 
.(寫出所有正確說法的番號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2,
a
b
的夾角為60°,
c
a
+
b
d
=
a
+2
b
的夾角為銳角,求λ的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(θ)=
3
sinθ+cosθ,其中θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始終與x軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn)P(x,y)且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(
1
2
,
3
2
)
,則f(θ)的值為
 

(2)若點(diǎn)P(x,y)為平面區(qū)域Ω:
x+y≥1
x≤1
y≤1
內(nèi)的一個動點(diǎn),記f(θ)的最大值為M,最小值m,則logMm=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+x,x≥0
x-ax2x<0
,設(shè)關(guān)于x的不等式f(x+a)<f(x)的解集為M,若[-
1
2
,
1
2
]⊆M,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案