已知拋物線C關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過(guò)點(diǎn)
(1)求拋物線C的標(biāo)準(zhǔn)方程
(2)直線過(guò)拋物線的焦點(diǎn)F,與拋物線交于A、B兩點(diǎn),線段AB的中點(diǎn)M的橫坐標(biāo)為3,求弦長(zhǎng)以及直線的方程。

(1);(2)直線方程為:;.

解析試題分析:(1)依題意設(shè)拋物線方程為:過(guò)
拋物線方程為                                                           ……4分
(2)  
當(dāng)直線斜率不存在時(shí)即方程為:此時(shí)AB中點(diǎn)為F(1,0)不合題意,舍去          ……6分
令直線方程為:代入拋物線方程得:
得:                                                   ……9分
,
直線方程為:;                                          ……13分
考點(diǎn):本題考查了拋物線方程的求法及直線與拋物線的位置關(guān)系。
點(diǎn)評(píng):對(duì)于弦長(zhǎng)問(wèn)題,只需聯(lián)立方程利用韋達(dá)定理及弦長(zhǎng)公式求解即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求點(diǎn)在上, 點(diǎn)在上,且對(duì)角線過(guò)點(diǎn),已知米,米.
(1)要使矩形的面積大于32平方米,則的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)當(dāng)的長(zhǎng)度為多少時(shí),矩形花壇的面積最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,是半圓的直徑,是半圓(除端點(diǎn))上的任意一點(diǎn).在線段的延長(zhǎng)線上取點(diǎn),使,試求動(dòng)點(diǎn)的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求下列各曲線的標(biāo)準(zhǔn)方程
(Ⅰ)實(shí)軸長(zhǎng)為12,離心率為,焦點(diǎn)在x軸上的橢圓;
(Ⅱ)拋物線的焦點(diǎn)是雙曲線的左頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓O和定點(diǎn)A(2,1),由圓O外一點(diǎn)向圓O引切線PQ,切點(diǎn)為Q,且滿足

(1) 求實(shí)數(shù)ab間滿足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點(diǎn),試求半徑取最小值時(shí)圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,兩個(gè)定點(diǎn),的垂心H(三角形三條高線的交點(diǎn))是AB邊上高線CD的中點(diǎn)。
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)斜率為2的直線交動(dòng)點(diǎn)C的軌跡于P、Q兩點(diǎn),求面積的最大值(O是坐標(biāo)原點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且),證明為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)分別是圓和橢圓的弦,且弦的端點(diǎn)在軸的異側(cè),端點(diǎn)、的橫坐標(biāo)分別相等,縱坐標(biāo)分別同號(hào).

(Ⅰ)若弦所在直線斜率為,且弦的中點(diǎn)的橫坐標(biāo)為,求直線的方程;
(Ⅱ)若弦過(guò)定點(diǎn),試探究弦是否也必過(guò)某個(gè)定點(diǎn). 若有,請(qǐng)證明;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案