【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點E,F(xiàn)分別是PB,DC的中點.
(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.
【答案】
(1)證明:取CB的中點G,連結(jié)DG,因為AD∥BG且AD=BD,
所以四邊形ABGD為平行四邊形,
所以DG=AB=12,
又因為AB⊥AD,
所以DG⊥AD,
又PD⊥平面ABCD,
故以點D原點建立如圖所示的空間直角坐標系.…
因為BC=10,AD=5,PD=8,
所以有D(0,0,0),P(0,0,8),B(12,5,0),C(12,﹣5,0),
因為E,F(xiàn)分別是PB,DC的中點,
所以E(6,﹣2.5,0),F(xiàn)(6,2.5,4),
因為PD⊥平面ABCD,DG平面ABCD,
所以PD⊥DG,
又因為DG⊥AD,AD∩PD=D,AD,PD平面PAD,
所以DG⊥平面PAD,
所以 =(12,0,0)為平面PAD的一個法向量,
又 =(0,5,4), =0,
所以 ,
又EF平面PAD,所以EF∥平面PAD;
(2)設(shè)平面PAD的法向量為 =(x,y,z),
所以 ,即 ,即 ,
令x=5,則 =(5,﹣12,0)…
所以EF與平面PDB所成角θ滿足:
sinθ= = = ,
所以EF與平面PDB所成角的正弦值為
【解析】(1)先建立空間直角坐標系,再找出平面PAD的一個法向量,進而利用兩個向量垂直可證EF∥平面PAD;(2)先找出平面PAD的法向量,再利用線面夾角公式可得EF與平面PDB所成角的正弦值.
【考點精析】通過靈活運用直線與平面平行的判定和空間角的異面直線所成的角,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在著名的漢諾塔問題中有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n),則f(6)=( )
A.31
B.33
C.63
D.65
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=cosωx+1,2sinωx,b=cosωx-,cosωx), ω>0.
(Ⅰ)當ωx≠kπ+,k∈Z時,若向量c=(1,0),d=(,0),且(a-c)∥(b+d),求4sin2ωx-cos2ωx的值;
(Ⅱ)若函數(shù)f(x)=a·b的圖象的相鄰兩對稱軸之間的距離為,當x∈[],g時,求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù), , , 在等差數(shù)列中, ,
用表示數(shù)列的前2018項的和,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園為訓(xùn)練孩子的數(shù)字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數(shù)字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字
(1)求取出的3張卡片上的數(shù)字互不相同的概率;
(2)求隨機變量X的分布列及數(shù)學(xué)期望;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一點F,使BF∥平面AEC?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位長度,所得圖像對應(yīng)的函數(shù)( )
A. 在區(qū)間上單調(diào)遞減 B. 在區(qū)間上單調(diào)遞增
C. 在區(qū)間上單調(diào)遞減 D. 在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長為a,M,N分別為A1B和AC上的點,A1M=AN= ,則MN與平面BB1C1C的位置關(guān)系為( )
A.相交
B.平行
C.垂直
D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com