【題目】經(jīng)市場調(diào)查,某商品每噸的價格為x(1<x<14)萬元時,該商品的月供給量為y1噸,y1=ax+ a2﹣a(a>0):月需求量為y2噸,y2=﹣ x2﹣ x+1,當該商品的需求量大于供給量時,銷售量等于供給量:當該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.
(1)已知a= ,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);
(2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實數(shù)a的取值范圍.
【答案】
(1)解:當a= ,x=7時,y1= ×7+ ×( )2﹣ =1+ ﹣ = ,
y2=﹣ ×( )2﹣ × +1= ,
∴y1>y2,
∴該月銷售額為7× ×104≈50313(元)
(2)解:令f(x)=y1﹣y2= x2+( +a)x﹣a﹣1,
則f(x)在[6,14)上有零點,
∵a>0,∴f(0)=﹣a﹣1<0,又f(x)的圖象開口向上,
∴f(x)在[6,14)上只有1個零點,
∴ ,即 ,
解得:0<a≤
【解析】(1)計算y1 , y2 , 比較大小確定銷售量,再計算銷售額;(2)令f(x)=y1﹣y2 , 則f(x)在[6,14)上有零點,根據(jù)零點的存在性定理列不等式組解出a的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=x,求a,b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時,f(x)= ,a=f( ),b=f( ),c=f( ),則( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)=x3﹣ax2+1在(1,3)內(nèi)單調(diào)遞減,則實數(shù)a的范圍是( )
A.[ ,+∞)
B.(﹣∞,3]
C.(3, )
D.(0,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=mln(x+1)﹣nx在點(1,f(1))處的切線與y軸垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的單調(diào)區(qū)間;
(Ⅱ)設g(x)=﹣x2+2x,確定非負實數(shù)a的取值范圍,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com