如圖,點(diǎn)E在正方形ABCD邊CD上,四邊形DEFG也是正方形,已知AB=a,DE=b(a,b為常數(shù),且a>b>0),則△ACF的面積( 。
A、只與a的大小有關(guān)
B、只與b的大小有關(guān)
C、只與CE的大小有關(guān)
D、無(wú)法確定
考點(diǎn):三角形的面積公式
專(zhuān)題:立體幾何
分析:如圖所示,利用S△ACF=S△ACD+S梯形ADGF-S△AFG即可得出.
解答: 解:如圖所示,S△ACF=S△ACD+S梯形ADGF-S△AFG
=
1
2
a2
+
(a+b)b
2
-
1
2
b(a+b)

=
1
2
a2

因此△ACF的面積只與a有關(guān)系.
故選:A.
點(diǎn)評(píng):本題考查了三角形與梯形、正方形的面積計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1],設(shè)命題p:“f(x)的定義域?yàn)镽”;命題q:“f(x)的值域是R”.
(1)若命題p為真,求實(shí)數(shù)a的取值范圍;
(2)若命題p為假,命題q為真時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知g(x)=mx,G(x)=lnx.
(1)若f(x)=G(x)-x+1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若G(x)+x+2≤g(x)恒成立,求m的取值范圍;
(3)令b=G(a)+a+2,求證:b-2a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是單調(diào)增函數(shù),如果實(shí)數(shù)t滿(mǎn)足f(t)+f(-t)<2f(1),那么t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知映射A→B的對(duì)應(yīng)法則f:x→3x+1,則B中的元素7在A中的與之對(duì)應(yīng)的元素是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以F為焦點(diǎn)的拋物線(xiàn)y2=4x上的兩點(diǎn)A、B滿(mǎn)足
AF
=3
FB
,則弦AB的中點(diǎn)到準(zhǔn)線(xiàn)的距離為( 。
A、
8
3
B、
4
3
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)m(x)=x3-
3
x2,h(x)=
3
ax2
-3ax
(1)若函數(shù)f(x)=m(x)-h(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)=m(x)-h(x)在(-∞,+∞)不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)判斷過(guò)點(diǎn)A(1,-
5
2
)
可作曲線(xiàn)f(x)=m(x)+
3
x2
-3x多少條切線(xiàn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿(mǎn)足不等式x(x2+1)>(x+1)(x2-x+1)的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A?B,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,3)
B、(-∞,3]
C、(-1,+∞)
D、[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案