A. | 有最小值-e | B. | 有最小值e | C. | 有最大值e | D. | 有最大值e+1 |
分析 求得f(x)的導(dǎo)數(shù),可得切線的斜率,解方程可得b=-1,a=2,求出g(x)的導(dǎo)數(shù)和單調(diào)性,可得最值,解不等式即可得到m的最值.
解答 解:∵$f(x)=tanx=\frac{sinx}{cosx}$,∴$f'(x)=\frac{{cos{x^2}-sinx•(-sinx)}}{{{{cos}^2}x}}=\frac{1}{{{{cos}^2}x}}$,
∴$a=f'(-\frac{π}{4})=2$,又點(diǎn)$(-\frac{π}{4},-1)$在直線$y=ax+b+\frac{π}{2}$上,
∴$-1=2•(-\frac{π}{4})+b+\frac{π}{2}$,∴b=-1,
∴g(x)=ex-x2+2,g'(x)=ex-2x,g''(x)=ex-2,
當(dāng)x∈[1,2]時(shí),g''(x)≥g''(1)=e-2>0,
∴g'(x)在[1,2]上單調(diào)遞增,
∴g'(x)≥g(1)=e-2>0,∴g(x)在[1,2]上單調(diào)遞增,
∴$\left\{\begin{array}{l}m≤g{(x)_{min}}=g(1)=e+1\\{m^2}-2≥g{(x)_{max}}=g(2)={e^2}-2\end{array}\right.⇒m≤-e$或e≤m≤e+1,
∴m的最大值為e+1,無最小值,
故選:D.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間和極值、最值,考查不等式恒成立問題的解法,注意運(yùn)用函數(shù)的單調(diào)性,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 |
y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com