3.已知a,b∈R,直線y=ax+b+$\frac{π}{2}$與函數(shù)f(x)=tanx的圖象在x=-$\frac{π}{4}$處相切,設(shè)g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實(shí)數(shù)m( 。
A.有最小值-eB.有最小值eC.有最大值eD.有最大值e+1

分析 求得f(x)的導(dǎo)數(shù),可得切線的斜率,解方程可得b=-1,a=2,求出g(x)的導(dǎo)數(shù)和單調(diào)性,可得最值,解不等式即可得到m的最值.

解答 解:∵$f(x)=tanx=\frac{sinx}{cosx}$,∴$f'(x)=\frac{{cos{x^2}-sinx•(-sinx)}}{{{{cos}^2}x}}=\frac{1}{{{{cos}^2}x}}$,
∴$a=f'(-\frac{π}{4})=2$,又點(diǎn)$(-\frac{π}{4},-1)$在直線$y=ax+b+\frac{π}{2}$上,
∴$-1=2•(-\frac{π}{4})+b+\frac{π}{2}$,∴b=-1,
∴g(x)=ex-x2+2,g'(x)=ex-2x,g''(x)=ex-2,
當(dāng)x∈[1,2]時(shí),g''(x)≥g''(1)=e-2>0,
∴g'(x)在[1,2]上單調(diào)遞增,
∴g'(x)≥g(1)=e-2>0,∴g(x)在[1,2]上單調(diào)遞增,
∴$\left\{\begin{array}{l}m≤g{(x)_{min}}=g(1)=e+1\\{m^2}-2≥g{(x)_{max}}=g(2)={e^2}-2\end{array}\right.⇒m≤-e$或e≤m≤e+1,
∴m的最大值為e+1,無最小值,
故選:D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間和極值、最值,考查不等式恒成立問題的解法,注意運(yùn)用函數(shù)的單調(diào)性,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線y=kx+$\frac{3}{2}$與曲線y2-2y-x+3=0只有一個(gè)交點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在Rt△ABC中,|AB|=1,∠BAC=60°,∠B=90°.
(1)若G是△ABC的重心,求$\overrightarrow{GB}$•$\overrightarrow{GC}$的值;
(2)若G是△ABC的內(nèi)心,求$\overrightarrow{GB}$•$\overrightarrow{GC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.陳師傅購買安居工程集資房62m2,單價(jià)為3000元/m2,一次性國(guó)家財(cái)政補(bǔ)貼27900元,學(xué)校補(bǔ)貼18600元,余款由個(gè)人負(fù)擔(dān),房地產(chǎn)開發(fā)公司對(duì)教師實(shí)行分期付款(注①).每期為一年,等額付款,簽訂購房合同后一年付款一次,再經(jīng)過一年又付款一次,共付10次,10年后付清,如果按年利率5.6%,每年按復(fù)利計(jì)算(注②),那么每年應(yīng)付款多少元?畫出程序框圖,并寫出計(jì)算所需的程序.
注:①各期所付款的本息和的總和,應(yīng)等于個(gè)人負(fù)擔(dān)的購房余款的本息和.
    ②每年按復(fù)利計(jì)算,即本年利息計(jì)入次年的本金中生息.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,己知a1═1,Sn+1=2Sn+n+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+1$,其中向量$\overrightarrow a=(\sqrt{3},2sin\frac{ωx}{2})$,$\overrightarrow b=(sinωx,-sin\frac{ωx}{2})$,ω>0,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的最小值,并求出相應(yīng)的x的取值集合;
(3)將f(x)的圖象向左平移φ個(gè)單位,所得圖象關(guān)于點(diǎn)$(\frac{π}{3},0)$對(duì)稱,求φ的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:萬噸)對(duì)價(jià)格y(單位:千元/噸)和年利潤(rùn)z的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如表:
x12345
y7.06.55.53.82.2
(1)求關(guān)于的線性回歸方程$\hat y=\hat bx+\hat a$;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)計(jì)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)z取到最大值?(保留兩位小數(shù))
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平面直角坐標(biāo)系xOy中,曲線y=xlnx在x=e處的切線與兩坐標(biāo)軸圍成的三角形的面積是$\frac{e^2}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線C1:$\frac{x^2}{3}$-$\frac{{16{y^2}}}{p^2}$=1的左焦點(diǎn)在拋物線C2:y2=2px(p>0)的準(zhǔn)線上,則雙曲線C1的離心率為(  )
A.$\frac{4}{3}$B.$\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案