【題目】如圖,在四棱錐中,底面為梯形,平面平面

為側(cè)棱的中點(diǎn),且.

(1)證明: 平面;

(2)若點(diǎn)到平面的距離為,且,求點(diǎn)到平面的距離.

【答案】(1)見(jiàn)解析;(2).

【解析】試題分析:1)取的中點(diǎn)為,連接,可以證明平面平面,故 平面.(2)根據(jù)已知條件可以證明: 平面為直角三角形,注意底面是直角梯形,從而可以計(jì)算,而是直角三角形且有一個(gè)角為,故可以計(jì)算的長(zhǎng)度,從而可以計(jì)算的面積,最后求得體積.

解析:(1)證明:取的中點(diǎn),連接. 為側(cè)棱的中點(diǎn), ,. 平面, 平面,故 平面.又, 四邊形為平行四邊形,則, 平面, 平面平面 . , , .

(2), , 平面 , , , ,從而到平面的距離為,因,故.過(guò)點(diǎn),則. ,在中, ,由等積法可得即點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國(guó)內(nèi)得到迅速推廣.最近,某機(jī)構(gòu)在某地區(qū)隨機(jī)采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心為,半徑為1的圓.

(1)求曲線, 的直角坐標(biāo)方程;

(2)設(shè)為曲線上的點(diǎn), 為曲線上的點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的取值范圍;

(2)令,已知函數(shù),若對(duì)任意,總存在 ,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn),過(guò)點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),直線與直線相交于點(diǎn),試證明:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店.為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)分店的年收入之和.

(個(gè))

2

3

4

5

6

(百萬(wàn)元)

2.5

3

4

4.5

6

(Ⅰ)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(Ⅱ)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分店,才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?

參考公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018貴州遵義市高三上學(xué)期第二次聯(lián)考設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點(diǎn)為,以為焦點(diǎn),離心率的橢圓與拋物線的一個(gè)交點(diǎn)為;自引直線交拋物線于兩個(gè)不同的點(diǎn),設(shè)

)求拋物線的方程和橢圓的方程;

)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與直線都經(jīng)過(guò)點(diǎn).直線平行,且與橢圓交于兩點(diǎn),直線軸分別交于兩點(diǎn).

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,平面平面

為側(cè)棱的中點(diǎn),且.

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案