【題目】如圖,在四棱錐中,四邊形是邊長(zhǎng)為2的正方形,,的中點(diǎn),點(diǎn)上,平面的延長(zhǎng)線上,且.

(1)證明:平面.

(2)過點(diǎn)的平行線,與直線相交于點(diǎn),點(diǎn)的中點(diǎn),求到平面的距離.

【答案】1)見解析;(2

【解析】

1)取的中點(diǎn)為,連接,過,連接,通過證明四邊形是平行四邊形,得,證得線面平行;

2)考慮三棱錐的體積,利用等體積法求出到平面的距離為到平面的距離是到平面的距離的一半,即可得解.

1)證明:的中點(diǎn)為,連接,過,連接,

,且.

因?yàn)?/span>平面,所以.

中,,易求,.

,則.

因?yàn)?/span>,所以.

因?yàn)?/span>,且,所以四邊形是平行四邊形,

所以,又平面平面,

所以平面.

2)因?yàn)?/span>平面,所以,而是正方形,所以.

因?yàn)?/span>顯然是相交直線,所以平面,

所以平面平面.

的中點(diǎn)為,連接,,則平面,且.

因?yàn)辄c(diǎn)的中點(diǎn),所以,,

中,,,,所以.

,所以,

而三棱錐的體積.

到平面的距離為,

,所以.

因?yàn)?/span>到平面的距離是到平面的距離的一半,

所以到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知某區(qū)甲、乙、丙三所學(xué)校的教師志愿者人數(shù)分別為240,160,80.為助力疫情防控,現(xiàn)采用分層抽樣的方法,從這三所學(xué)校的教師志愿者中抽取6名教師,參與抗擊疫情·你我同行下卡口執(zhí)勤值守專項(xiàng)行動(dòng).

(Ⅰ)求應(yīng)從甲、乙、丙三所學(xué)校的教師志愿者中分別抽取的人數(shù);

(Ⅱ)設(shè)抽出的6名教師志愿者分別記為,,,,,現(xiàn)從中隨機(jī)抽取2名教師志愿者承擔(dān)測(cè)試體溫工作.

i)試用所給字母列舉出所有可能的抽取結(jié)果;

ii)設(shè)為事件抽取的2名教師志愿者來自同一所學(xué)校,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲一個(gè)質(zhì)地均勻的骰子的試驗(yàn),事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“不小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A或事件B至少有一個(gè)發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)存在極值且這些極值的和不小于,的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù).

(1)若函數(shù)在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)討論的單調(diào)性;

2)寫出的極值點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線軸相交于點(diǎn),與曲線相交于點(diǎn),且

(1)求拋物線的方程;

(2)過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),過分別作拋物線的切線,兩切線交于點(diǎn),求證點(diǎn)的縱坐標(biāo)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),對(duì)于,有.

(1)證明:

(2),

證明 :(I)當(dāng)時(shí),

(II)當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一機(jī)器可以按各種不同的速度運(yùn)轉(zhuǎn),其生產(chǎn)物件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)物件的多少隨機(jī)器運(yùn)轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位:轉(zhuǎn)/秒),用y表示每小時(shí)生產(chǎn)的有缺點(diǎn)物件個(gè)數(shù),現(xiàn)觀測(cè)得到的4組觀測(cè)值為

(1)假定yx之間有線性相關(guān)關(guān)系,求y對(duì)x的回歸直線方程.

(2)若實(shí)際生產(chǎn)中所容許的每小時(shí)最大有缺點(diǎn)物件數(shù)為10,則機(jī)器的速度不得超過多少轉(zhuǎn)/秒?(精確到1轉(zhuǎn)/秒)

回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案