(2012•懷化二模)已知a+b+c=1,m=a2+b2+c2,則m的最小值為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:[同步]2014年人教A版選修一1-2第一章1.2練習(xí)卷(解析版) 題型:選擇題
(2012•湛江二模)通過隨機(jī)詢問110名大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
| 男 | 女 | 總計(jì) |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由上表算得k≈7.8,因此得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年人教A版選修2-1 第二章圓錐曲線與方程練習(xí)卷(解析版) 題型:解答題
(12分)已知?jiǎng)訄AM過定點(diǎn)F(0,﹣),且與直線y=相切,橢圓N的對稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為F,點(diǎn)A(1,)在橢圓N上.
(1)求動(dòng)圓圓心M的軌跡Γ的方程及橢圓N的方程;
(2)若動(dòng)直線l與軌跡Γ在x=﹣4處的切線平行,且直線l與橢圓N交于B,C兩點(diǎn),試求當(dāng)△ABC面積取到最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年人教A版選修2-1 第二章圓錐曲線與方程練習(xí)卷(解析版) 題型:選擇題
(5分)設(shè)雙曲線以橢圓長軸上的兩個(gè)端點(diǎn)為焦點(diǎn),其一支上的動(dòng)點(diǎn)到相應(yīng)焦點(diǎn)的最短距離為5﹣2,則雙曲線的漸近線的斜率為( )
A.±2 B.± C.± D.±
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014人教B版選修4-5 2.4最大值與最小值 優(yōu)化數(shù)學(xué)模型(解析版) 題型:填空題
已知x、y、z∈R,且2x+3y+3z=1,則x2+y2+z2的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014人教B版選修4-5 2.4最大值與最小值 優(yōu)化數(shù)學(xué)模型(解析版) 題型:選擇題
x+y+z=1,則2x2+3y2+z2的最小值為( )
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆陜西省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量都是非零向量,且與垂直,與垂直,求與夾角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆陜西省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知集合M={第二象限的角},N={鈍角},P={大于900的角},則下列關(guān)系式中正確的是( )
A.M=N=P B.M∩P=N C.N∩P D.N
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2015年蘇教版必修一 1.1 集合的含義及其表示練習(xí)卷(解析版) 題型:解答題
集合A={x|x=a+b,a、b∈Z},x1∈A,x2∈A,求證:x1x2∈A.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com