【題目】已知函數(shù)

1)若k≠0,試討論函數(shù)fx)的奇偶性,并說明理由;

2)已知fx)在(﹣,0]上單調(diào)遞減,求實數(shù)k的取值范圍.

【答案】1)見解析(2)(﹣,0][1,+∞).

【解析】

1)對k兩種情況結(jié)合函數(shù)奇偶性的定義討論;(2)設(shè)tex,x∈(﹣,0],則有0t≤1,對k分,結(jié)合復(fù)合函數(shù)的單調(diào)性分析得解.

1)根據(jù)題意,函數(shù),

f(﹣x)=kex+ex1,

當(dāng)k1時,有fx)=f(﹣x),函數(shù)fx)為偶函數(shù),

當(dāng)k≠1時,fxf(﹣x)且f(﹣xfx),函數(shù)fx)為非奇非偶函數(shù);

2)根據(jù)題意,設(shè)texx∈(﹣,0],則有0t≤1,則ykt1

又由tex為增函數(shù),對于ykt1

當(dāng)k≤0時,ykt1在(0,1]為減函數(shù),函數(shù)fx)在R上遞減,符合題意,

當(dāng)k0時,函數(shù)fx)在(0,)上為減函數(shù),在(,+∞)上為增函數(shù),

此時,若已知fx)在(﹣0]上單調(diào)遞減,必有1,解可得k≥1,

綜合可得:k的取值范圍為(﹣0][1,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(I)討論的單調(diào)性;

II)若有兩個極值點,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個平面垂直,下列命題中錯誤的是(    )

A.兩個平面內(nèi)分別垂直于交線的兩條直線相互垂直

B.一個平面內(nèi)的任一條直線必垂直于另一個平面.

C.一個平面內(nèi)存在直線垂直于另一個平面

D.一個平面內(nèi)的任意一條直線都垂直于另一個平面內(nèi)的無數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.

(1)求橢圓的方程;

(2)經(jīng)過點作直線,交橢圓于,兩點.如果恰好是線段的中點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型玩具廠研發(fā)生產(chǎn)一種新型玩具,年固定成本為10萬元,每生產(chǎn)千件需另投入3萬元,設(shè)該廠年內(nèi)共生產(chǎn)該新型玩具千件并全部銷售完,每千件的銷售收入為萬元,且滿足函數(shù)關(guān)系:

(1)寫出年利潤(萬元)關(guān)于該新型玩具年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在此新型玩具的生產(chǎn)中所獲年利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值,用樣本估計總體.

(1)將直徑小于等于或直徑大于的零件認(rèn)為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個零件,計算其中次品個數(shù)的數(shù)學(xué)期望

(2)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評判(表示相應(yīng)事件的概率):①;②;③.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)求的單調(diào)遞增區(qū)間;

(2)當(dāng)的圖像剛好與軸相切時,設(shè)函數(shù),其中,求證:存在極小值且該極小值小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)如下圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E、F分別是BCCC1的中點.

(1)證明:平面AEF⊥平面B1BCC1;

(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)的圖象,只要將函數(shù)的圖象( )

A.每一點的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變),再將所得圖象向左平移個長度

B.每一點的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變),再將所得圖象向左平移個長度

C.向左平移個長度,再將所得圖象每一點的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變)

D.向左平移個長度,再將所得圖象每一點的橫坐標(biāo)變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變)

查看答案和解析>>

同步練習(xí)冊答案