15.用數(shù)學歸納法證明“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”時,由n=k不等式成立,證明n=k+1時,左邊應增加的項數(shù)是( 。
A.2k-1B.2k-1C.2kD.2k+1

分析 比較由n=k變到n=k+1時,左邊變化的項,即可得出結論.

解答 解:用數(shù)學歸納法證明等式$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”時,
當n=k時,左邊=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,
那么當n=k+1時,左邊=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k+1}}$,
∴由n=k遞推到n=k+1時不等式左邊增加了共2k+1-2k=2k項,
故選:C.

點評 本題考查數(shù)學歸納法,考查觀察、推理與運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.由曲線y=2$\sqrt{x}$,直線y=x-3及x軸所圍成的圖形的面積為( 。
A.12B.14C.16D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知二次函數(shù)f(x)=ax2+bx+1滿足f(-1)=0,且x∈R時,f(x)的值域為[0,+∞).
(1)求f(x)的表達式;
(2)設函數(shù)g(x)=f(x)-2kx,k∈R.
①若g(x)在x∈[-2,2]時是單調(diào)函數(shù),求實數(shù)k的取值范圍;
②若g(x)在x∈[-2,2]上的最小值g(x)min=-15,求k值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某研究機構對高二文科學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù)
X681012
Y2356
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出f'(x)=3x2-6x關于f'(x)=0的線性回歸方程x1=0;
(3)試根據(jù)(2)求出的線性回歸方程,預測記憶力為14的同學的判斷力.
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知全集U={x|1≤x≤6,x∈Z},集合A={1,3,4},集合B={2,4},則(∁UA)∪B=( 。
A.{1,2,4,6}B.{2,3,4,6}C.{2,4,5,6}D.{2,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+sinx+ex•cosx
(1)求該函數(shù)的導數(shù)f′(x)
(2)求函數(shù)f(x)在x=0處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$.
(1)化簡f(α),并求f(-$\frac{67π}{6}$);
(2)若f(α )=$\frac{2}{5}$,求cosα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求值:
(1)lg52+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2
(2)log89•log2732-($\sqrt{3-1}$)lg1+log535-log57.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,AB=AC=1,$BC=\sqrt{3}$,則向量$\overrightarrow{AC}$在$\overrightarrow{AB}$方向上的投影為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案