已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學歸納法)
① 當n=1時,,,故等式成立.
② 假設(shè)當n=k時等式成立,即,則當n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,成立.
科目:高中數(shù)學 來源:福建省“四地六校”09-10學年高一下學期第二次聯(lián)考數(shù)學試卷 題型:解答題
(本題滿分12分)
已知是等差數(shù)列,其前n項和為,已知求數(shù)列的通項公式
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省長郡中學高二學業(yè)水平二?荚嚁(shù)學 題型:解答題
已知是等差數(shù)列,其前n項和為,已知
(1)求數(shù)列的通項公式; (2)設(shè),證明是等比數(shù)列,并求其前n項和。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省寧波市金蘭合作組織高三上學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題
(本題14分)已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)記,,求().
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(天津卷解析版) 題型:解答題
已知是等差數(shù)列,其前n項和為, 是等比數(shù)列,且
(I)求數(shù)列與的通項公式;
(II)記求證:,。
【考點定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和公式、數(shù)列求和等基礎(chǔ)知識.考查化歸與轉(zhuǎn)化的思想方法.考查運算能力、推理論證能力.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年廣東省高二第二學期3月月考數(shù)學理卷 題型:解答題
(14分)
已知是等差數(shù)列,其前n項和為Sn,已知
(1)求數(shù)列的通項公式;
(2)設(shè),證明是等比數(shù)列,并求其前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com