4.命題p:“?x0∈R“,x02-1≤0的否定¬p為( 。
A.?x∈R,x2-1≤0B.?x∈R,x2-1>0C.?x0∈R,x02-1>0D.?x0∈R,x02-1<0

分析 直接寫出特稱命題的否定得答案.

解答 解:命題p:“?x0∈R“,x0-1≤0為特稱命題,其否定為全稱命題,
∴¬p為?x∈R,x2-1>0.
故選:B.

點(diǎn)評(píng) 本題考查特稱命題的否定,注意命題的否定的格式是關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且$C=\frac{π}{6}$,a+b=12,則△ABC面積的最大值為( 。
A.8B.9C.16D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某空間幾何體的三視圖如圖所示,其中俯視圖是半徑為1的圓,則該幾何體的體積是( 。
A.πB.$\frac{4π}{3}$C.$\frac{7π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$cos({α-\frac{π}{6}})+sinα=\frac{{4\sqrt{3}}}{5}$,且$α∈({\frac{π}{2},π})$,則$sin({α+\frac{π}{3}})$的值是( 。
A.$\frac{{4\sqrt{3}-3}}{10}$B.$\frac{{4\sqrt{3}+3}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{3\sqrt{3}+4}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|cx+a|+|cx-b|,g(x)=|x-2|+c.
(1)當(dāng)a=1,c=2,b=3時(shí),解方程f(x)-4=0;
(2)當(dāng)c=1,b=1時(shí),若對(duì)任意x1∈R,都存在x2∈R,使得g(x2)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線方程為(  )
A.y=±3xB.y=±$\frac{1}{3}$xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$,則目標(biāo)函數(shù)z=-2x+y的最大值為( 。
A.1B.-1C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前項(xiàng)n和為Sn,a1=1,Sn與-3Sn+1的等差中項(xiàng)是$-\frac{3}{2}$.
(1)證明數(shù)列{Sn-$\frac{3}{2}$}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若對(duì)任意正整數(shù)n,不等式k≤Sn恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知F1、F2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)P在C的漸進(jìn)線上,PF1⊥x軸,若△PF1F2為等腰直角三角形,則C的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{2}$+1D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案