【題目】已知橢圓E:,過右焦點F的直線l與橢圓E交于A,B兩點(A,B兩點不在x軸上),橢圓E在A,B兩點處的切線交于P,點P在定直線上.
(1)記點,求過點與橢圓E相切的直線方程;
(2)以為直徑的圓過點F,求面積的最小值.
科目:高中數學 來源: 題型:
【題目】已知拋物線()上的兩個動點和,焦點為F.線段AB的中點為,且A,B兩點到拋物線的焦點F的距離之和為8.
(1)求拋物線的標準方程;
(2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的右焦點為,短軸長為2,過定點的直線交橢圓于不同的兩點、(點在點,之間).
(1)求橢圓的方程;
(2)若,求實數的取值范圍;
(3)若射線交橢圓于點(為原點),求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當x∈(1,)時,f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個極值點,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E:,過右焦點F的直線l與橢圓E交于A,B兩點(A,B兩點不在x軸上),橢圓E在A,B兩點處的切線交于P,點P在定直線上.
(1)記點,求過點與橢圓E相切的直線方程;
(2)以為直徑的圓過點F,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐,底面為矩形,側面平面,.,若點M為的中點,則下列說法正確的個數為( )
(1)平面 (2)四棱錐的體積為12
(3)平面 (4)四棱錐外接球的表面積為
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,圖中直棱柱的底面是菱形,其中.又點分別在棱上運動,且滿足:,.
(1)求證:四點共面,并證明∥平面.
(2)是否存在點使得二面角的余弦值為?如果存在,求出的長;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com