【題目】給出下列四個(gè)命題:
①命題“若,則”的逆否命題;
②“,使得”的否定是:“,均有”;
③命題“”是“”的充分不必要條件;
④:,:,且為真命題.
其中真命題的序號(hào)是________.(填寫所有真命題的序號(hào))
【答案】①④
【解析】
對于①,由原命題與其逆否命題同真同假,因?yàn)樵}為真,即①為真命題;
對于②,特稱命題的否定為全稱命題,原命題在否定時(shí)出錯(cuò),則②為假命題;
對于③,先求“”的充要條件,再判斷其充要條件與“”的充要性即可;
對于④,因?yàn)?/span>為真命題,為真命題,故且為真命題.
解:對于①,命題“若,則”為真命題,由原命題與其逆否命題同真同假,即①為真命題;
對于②,命題“,使得”的否定是:“,均有”,則②為假命題;
對于③,“”的充要條件為“”,即命題“”是“”的必要不充分條件,則③為假命題;
對于④,因?yàn)?/span>,所以為真命題,因?yàn)?/span>,所以為真命題,故且為真命題,則④為真命題;
故答案為①④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若殘差平方和越小,則相關(guān)指數(shù)越小
B.將一組數(shù)據(jù)中每一個(gè)數(shù)據(jù)都加上或減去同一常數(shù),方差不變
C.若的觀測值越大,則判斷兩個(gè)分類變量有關(guān)系的把握程度越小
D.若所有樣本點(diǎn)均落在回歸直線上,則相關(guān)系數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)境指數(shù)是“宜居城市”評比的重要指標(biāo),根據(jù)以下環(huán)境指數(shù)的數(shù)據(jù),對名列前20名的“宜居城市”的環(huán)境指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示,現(xiàn)從環(huán)境指數(shù)在和內(nèi)的“宜居城市”中隨機(jī)抽取2個(gè)市進(jìn)行調(diào)研,則至少有1個(gè)市的環(huán)境指數(shù)在的概率為( )
組號(hào) | 分組 | 頻數(shù) |
1 | 2 | |
2 | 8 | |
3 | 7 | |
4 | 3 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月20日,黔東南州第十屆旅游產(chǎn)業(yè)發(fā)展大會(huì)在凱里市舉行,大會(huì)指出了交通對旅游業(yè)的發(fā)展有著深刻的影響,并引起了相關(guān)部門的高度重視.現(xiàn)針對凱里市區(qū)重要道路網(wǎng)中的個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如下圖所示.(交通指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶拢?/span>
(1)利用頻率分布直方圖估計(jì)凱里市區(qū)這個(gè)交通路段的交通指數(shù)的眾數(shù)與平均數(shù).
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?/span>個(gè)路段,再從這個(gè)路段中任取個(gè),求至少有個(gè)路段為中度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為(其中為常數(shù)).
(1)若曲線N與曲線M只有一個(gè)公共點(diǎn),求的取值范圍;
(2)當(dāng)時(shí),求曲線M上的點(diǎn)與曲線N上的點(diǎn)之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是矩形,是等邊三角形,平面平面,,為棱上一點(diǎn),為的中點(diǎn),四棱錐的體積為.
(1)若為棱的中點(diǎn),是的中點(diǎn),求證:平面平面;
(2)是否存在點(diǎn),使得平面與平面所成的銳二面角的余弦值為?若存在,確定點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù).
(1)討論的單調(diào)性;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:對任意的正整數(shù)都有,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù).
(1)討論的單調(diào)性;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:對任意的正整數(shù)都有,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com