【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)Q在C的漸近線上,則C的兩條漸近線方程為__________.
【答案】y=±2x
【解析】
求得雙曲線的漸近線方程,由圓的性質(zhì)可得PF1⊥PF2,由三角形的中位線定理可得PF1⊥OQ,OQ的方程設(shè)為bx+ay=0,運(yùn)用點(diǎn)到直線的距離公式可得F1(﹣c,0)到OQ的距離,結(jié)合雙曲線的定義可得b=2a,進(jìn)而雙曲線的漸近線方程.
雙曲線的漸近線方程為y=±x,
點(diǎn)P是以F1F2為直徑的圓與C在第一象限內(nèi)的交點(diǎn),可得PF1⊥PF2,
線段PF1的中點(diǎn)Q在C的漸近線,可得OQ∥PF2,
且PF1⊥OQ,OQ的方程設(shè)為bx+ay=0,
可得F1(﹣c,0)到OQ的距離為b,
即有|PF1|=2b,|PF2|=2|OQ|=2a,
由雙曲線的定義可得|PF1|﹣|PF2|=2b﹣2a=2a,
即b=2a,
所以雙曲線的漸近線方程為y=±2x.
故答案為:y=±2x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1、F2是橢圓C:的左、右焦點(diǎn),點(diǎn)在橢圓C上,且滿足.
(1)求橢圓C的方程;
(2)直線l:交橢圓C于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)M(t,0),求mt的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購(gòu)商從采購(gòu)的一批水果中隨機(jī)抽取個(gè),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個(gè)數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)
(2)用樣本估計(jì)總體,果園老板提出兩種購(gòu)銷方案給采購(gòu)商參考.
方案:不分類賣出,單價(jià)為元.
方案:分類賣出,分類后的水果售價(jià)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(jià)(元/kg) | 16 | 18 | 22 | 24 |
從采購(gòu)單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再?gòu)某槿〉?/span>個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從甲、乙兩地區(qū)分別隨機(jī)調(diào)查了100個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,分別得到甲地區(qū)和乙地區(qū)用戶滿意度評(píng)分的頻率分布直方圖.
若甲地區(qū)和乙地區(qū)用戶滿意度評(píng)分的中位數(shù)分別為m1,m2;平均數(shù)分別為s1,s2,則下面正確的是( 。
A. m1>m2,s1>s2B. m1>m2,s1<s2
C. m1<m2,s1<s2D. m1<m2,s1>s2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 .
(1)若是上的增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國(guó)古畫,現(xiàn)收藏于中國(guó)臺(tái)北故宮博物院.該作品簡(jiǎn)介:院角的棗樹結(jié)實(shí)累累,小孩群來(lái)攀扯,枝椏不停晃動(dòng),粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動(dòng)作,四人每人模仿一個(gè)動(dòng)作.若他們采用抽簽的方式來(lái)決定誰(shuí)模仿哪個(gè)動(dòng)作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)A(5,3),B(4,4)兩點(diǎn),且圓心在x軸上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過(guò)點(diǎn)(5,2),且被圓C所截得的弦長(zhǎng)為6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定直線m:y=2x-16,拋物線C:y2=ax(a>0).
(1)當(dāng)拋物線C的焦點(diǎn)在直線m上時(shí),確定拋物線C的方程;
(2)若△ABC的三個(gè)頂點(diǎn)都在(1)所確定的拋物線C上,且點(diǎn)A的縱坐標(biāo)y=8,△ABC的重心恰在拋物線C的焦點(diǎn)上,求直線BC的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com