若正實(shí)數(shù)a,b滿(mǎn)足2a+b=1,則
1
a
+
1
2b
的最小值為
9
2
9
2
分析:
1
a
+
1
2b
看作(
1
a
+
1
2b
)•1,然后把1換為2a+b,展開(kāi)后利用基本不等式求最值.
解答:解:
1
a
+
1
2b
=(
1
a
+
1
2b
)(2a+b)=2+
1
2
+
b
a
+
a
b
=
5
2
+
b
a
+
a
b

∵a,b是正實(shí)數(shù),∴
5
2
+
b
a
+
a
b
5
2
+2
b
a
a
b
=
9
2

1
a
+
1
2b
的最小值為
9
2

當(dāng)且僅當(dāng)
b
a
=
a
b
2a+b=1
,即a=b=
1
3
時(shí)“=”成立.
故答案為:
9
2
點(diǎn)評(píng):本題考查了利用基本不等式求最值,關(guān)鍵是對(duì)“1”的代換,利用基本不等式求最值要注意:“一正、二定、三相等”,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義復(fù)數(shù)的一種運(yùn)算z1*z2=
|z1|+|z2|
2
(等式右邊為普通運(yùn)算),若復(fù)數(shù)z=a+bi,且正實(shí)數(shù)a,b滿(mǎn)足a+b=3,則z*
z
最小值為( 。
A、
9
2
B、
3
2
2
C、
3
2
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、若正實(shí)數(shù)a,b,c滿(mǎn)足b(a+b+c)+ac≥16,a+2b+c≤8,則a+2b+c的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)正實(shí)數(shù)a,b滿(mǎn)足a+b≤3,若當(dāng)
x≥0
y≥0
x+y≤1
時(shí),恒有(x-a)2+(y-b)2≥2,則以a,b為坐標(biāo)的點(diǎn)(a,b)所形成的平面區(qū)域的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多做,則按所做的前兩題記分,作答時(shí),先在答題卡上把所選題目對(duì)應(yīng)的題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知二階矩陣M=
a1
3d
有特征值λ=-1及對(duì)應(yīng)的一個(gè)特征向量e1=
1
-3

(Ⅰ)求距陣M;
(Ⅱ)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2+t
y=t+1
(t
為參數(shù)),曲線P在以該直角坐標(biāo)系的原點(diǎn)O的為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系下的方程為p2-4pcosθ+3=0.
(Ⅰ)求曲線C的普通方程和曲線P的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C和曲線P的交點(diǎn)為A、B,求|AB|.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求實(shí)數(shù)t的取值范圍;
(Ⅱ)記t的最大值為T(mén),若正實(shí)數(shù)a、b、c滿(mǎn)足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江模擬)若正實(shí)數(shù)a,b滿(mǎn)足ab=2,則(1+2a)(1+b)的最小值為
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案