在平面直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-
3
),(0,
3
)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與C交于A,B兩點(diǎn).k為何值時(shí)以AB為直徑的圓經(jīng)過原點(diǎn)O?此時(shí)|AB|的值是多少?
(1)由條件知:P點(diǎn)的軌跡為焦點(diǎn)在y軸上的橢圓,其中c=
3
,a=2,
∴b2=a2-c2=1.
故軌跡C的方程為:x2+
y2
4
=1
;
(2)設(shè)A(x1,y1),B(x2,y2
y=kx+1
x2+
y2
4
=1
,消去y,
可得(kx+1)2+4x2=4,即(k2+4)x2+2kx-3=0
△=16k2+48>0,x1+x2=-
2k
k2+4
,x1x2=-
3
k2+4
,
∵以AB為直徑的圓經(jīng)過原點(diǎn)O,
OA
OB
,
∴x1x2+y1y2=0,
∴(k2+1)x1x2+k(x1+x2)+1=0,
∴(k2+1)(-
3
k2+4
)+k•(-
2k
k2+4
)+1=0,
∴k=±
1
2
,
∴k=±
1
2
時(shí),以AB為直徑的圓經(jīng)過原點(diǎn)O,
|AB|=
1+
1
4
(x1+x2)2-4x1x2
=
4
65
17
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知mn≠0,則方程mx2+ny2=1與mx+ny2=0在同一坐標(biāo)系下的圖形可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線b、c間的距離為
p
2
,A、B為直線a上的兩個(gè)定點(diǎn),且AB=2p,MN是在直線b上滑動(dòng)的長度為2p的線段.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求△AMN的外心C的軌跡E;
(2)當(dāng)△AMN的外心C在E上什么位置時(shí),使d+BC最。孔钚≈凳嵌嗌?(其中,d為外心C到直線c的距離)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)P的軌跡是曲線C,滿足:點(diǎn)P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數(shù),又點(diǎn)M(2,-
2
)
在曲線C上,點(diǎn)N(-1,1)在曲線C的內(nèi)部.
(1)求曲線C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)P與定點(diǎn)F(1,0)的距離和它到定直線x=5的距離比是
1
5
,則點(diǎn)P的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M在AB上,且AM=
1
3
,點(diǎn)P是平面ABCD上的動(dòng)點(diǎn),且動(dòng)點(diǎn)P到直線A1D1的距離與動(dòng)點(diǎn)P到點(diǎn)M的距離的平方差為1,則動(dòng)點(diǎn)的軌跡是(  )
A.圓B.拋物線C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)O(0,0),A(3,0),動(dòng)點(diǎn)P到定點(diǎn)O距離與到定點(diǎn)A的距離的比值是
1
2

(1)記動(dòng)點(diǎn)P的軌跡為曲線D.求曲線D的方程,并說明方程表示的曲線;
(2)若M是圓E:(x-2)2+(y-4)2=64上任意一點(diǎn),過M作曲線D的切線,切點(diǎn)是N,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與y軸相切且和半圓x2+y2=4(0≤x≤2)內(nèi)切的動(dòng)圓圓心的軌跡方程是(  )
A.y2=4(x+1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=-4(x-1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P是曲線y=2x2-1上的動(dòng)點(diǎn),定點(diǎn)A(0,-1),且點(diǎn)P不同于點(diǎn)A,若M點(diǎn)滿足
PM
=2
MA
,求點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案