12.若f(x)為偶函數(shù),且當(dāng)x∈[0,+∞),y=4x+3,則f(x)的解析式f(x)=$\left\{\begin{array}{l}{4x+3,x≥0}\\{-4x+3,x<0}\end{array}\right.$.

分析 根據(jù)題意,令x<0,則-x>0,結(jié)合函數(shù)[0,+∞)上的解析式可得f(-x)=-4x+3,又由函數(shù)為偶函數(shù)可得x<0時函數(shù)的解析式;進(jìn)而綜合2種情況可得答案.

解答 解:根據(jù)題意,令x<0,則-x>0,
則f(-x)=4(-x)+3=-4x+3,
又由f(x)為偶函數(shù),則f(x)=f(-x)=-4x+3,
故f(x)=$\left\{\begin{array}{l}{4x+3,x≥0}\\{-4x+3,x<0}\end{array}\right.$,
故答案為:f(x)=$\left\{\begin{array}{l}{4x+3,x≥0}\\{-4x+3,x<0}\end{array}\right.$.

點評 本題考查函數(shù)的奇偶性的運用,涉及函數(shù)解析式的求法,注意將函數(shù)的解析式寫成分段函數(shù)的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖的莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x、y的值分別為( 。
A.2,5B.5,5C.5,8D.8,8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“x=1”是“x2-2x+1=0”的 (  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在銳角△ABC中,AB=3,AC=4,SABC=3$\sqrt{3}$,則cosA=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)-cos2x-$\sqrt{3}$.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在[-$\frac{π}{12}$,$\frac{25}{36}$π]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p,q都是假命題,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.(¬p)∧qD.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點A(1,$\sqrt{2}$)在橢圓E:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1上,若斜率為$\sqrt{2}$的直線l與橢圓E交于B,C兩點,當(dāng)△ABC的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\sqrt{\frac{1}{2x-3}}$的定義域為($\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足c=2,C=$\frac{π}{3}$.
(Ⅰ)若a=$\frac{2\sqrt{3}}{3}$,求角A的大;
(Ⅱ)若△ABC的面積等于$\sqrt{3}$,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案