等差數(shù)列{an}中,a7+a14=80,求前20項之和S20
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)可得a1+a20=a7+a14=80,代入求和公式計算可得.
解答: 解:∵等差數(shù)列{an}中,a7+a14=80,
∴由等差數(shù)列的性質(zhì)可得a1+a20=a7+a14=80,
∴等差數(shù)列{an}的前20項之和S20=
20(a1+a20)
2
=
20×80
2
=800.
點評:本題考查等差數(shù)列的求和公式和性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)cosx+cosy=
1
2
,sinx+siny=
1
4
,求cos(x-y)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若c-a等于邊AC上的高h(yuǎn),則sin
C-A
2
+cos
A+C
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知8sinα+5cosβ=6,sin(α+β)=
47
80
,則8cosα+5sinβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)-x是偶函數(shù),且f(2)=1,則f(-2)=(  )
A、-3B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項等比數(shù)列{an}中,若log2(a1a9)=4,則a3a7等于( 。
A、16B、-16
C、10D、256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n,p,q是滿足條件m+n=p+q的任意正整數(shù),則對各項不為0的數(shù)列{an},am•an=ap•aq是數(shù)列{an}為等比數(shù)列的( 。l件.
A、充分不必要
B、必要不充分
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求f(x)=
sin2x+1
cos4x
的導(dǎo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的奇函數(shù)f(x),對任意實數(shù)x都有f(
3
4
+x)=f(
3
4
-x),且滿足f(1)>-2,f(2)=m-
3
m
,則實數(shù)m的取值范圍是( 。
A、-1<m<3
B、0<m<3
C、0<m<3或m<-1
D、m>3或m<-1

查看答案和解析>>

同步練習(xí)冊答案