分析 由已知利用同角三角函數(shù)基本關系式可求sin(α+β),sinα的值,利用兩角差的余弦函數(shù)公式即可計算求值得解.
解答 解:∵α、β為銳角,
∴α+β∈(0,π),
∵cos(α+β)=$\frac{8}{17}$>0,cosα=$\frac{3}{5}$,
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{15}{17}$,sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=$\frac{8}{17}$×$\frac{3}{5}$+$\frac{15}{17}$×$\frac{4}{5}$=$\frac{84}{85}$.
故答案為:$\frac{84}{85}$.
點評 本題主要考查了同角三角函數(shù)基本關系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?n∈N*,2n2+5n+2能被2整除是真命題 | |
B. | ?n∈N*,2n2+5n+2不能被2整除是真命題 | |
C. | ?n∈N*,2n2+5n+2不能被2整除是真命題 | |
D. | ?n∈N*,2n2+5n+2能被2整除是假命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-1<x<2} | B. | {x|-1≤x<2} | C. | {x|x≥-1} | D. | {x|x<2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com