【題目】定義滿足不等式|xA|BAR,B0)的實數(shù)x的集合叫做AB鄰域.若a+btt為正常數(shù))的a+b鄰域是一個關(guān)于原點對稱的區(qū)間,則a2+b2的最小值為______

【答案】

【解析】

先根據(jù)條件求出tx2a+bt;再結(jié)合鄰域是一個關(guān)于原點對稱的區(qū)間得到a+b=t,最后結(jié)合基本不等式即可求出a2+b2的最小值.

因為AB鄰域在數(shù)軸上表示以A為中心,B為半徑的區(qū)域,

|xa+bt|a+btx2a+bt,

而鄰域是一個關(guān)于原點對稱的區(qū)間,所以可得a+bt=0

所以a+b=t

又因為a2+b2≥2ab

所以2a2+b2a2+2ab+b2=a+b2=t2

所以:a2+b2

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中, .

(1)證明:平面平面

(2)若異面直線所成角為, , ,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市小型機動車駕照科二考試中共有5項考察項目,分別記作,,,,⑤.

1)某教練將所帶10名學(xué)員科二模擬考試成績進行統(tǒng)計(如圖1所示),并打算從恰有2項成績不合格的學(xué)員中任意抽出2人進行補測(只測不合格的項目),求補測項目種類不超過3項的概率;

2)如圖2,某次模擬演練中,教練要求學(xué)員甲倒車并轉(zhuǎn)向90°,在汽車邊緣不壓射線AC與射線BD的前提下,將汽車駛?cè)胫付ǖ耐\囄?/span>. 根據(jù)經(jīng)驗,學(xué)員甲轉(zhuǎn)向90°后可使車尾邊緣完全落在線段CD,且位于CD內(nèi)各處的機會相等.CA="BD=0.3m," AB="2.4m." 汽車寬度為1.8m, 求學(xué)員甲能按教練要求完成任務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),是定義域為的奇函數(shù).

(1)確定的值;

(2)若,函數(shù),,求的最小值;

(3)若,是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體中,與平面所成角的正弦值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù).

(Ⅰ) 的值;

(Ⅱ) 若存在,使不等式有解,求實數(shù)的取值范圍;

(Ⅲ)已知函數(shù)滿足,且規(guī)定,若對任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當(dāng)時,求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個幾何體的平面展開圖,其中四邊形為正方形,,,,為全等的等邊三角形,、分別為、的中點,在此幾何體中,下列結(jié)論中正確的個數(shù)有()

①平面平面

②直線與直線是異面直線

③直線與直線共面

④面與面的交線與平行

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求實數(shù)a的取值范圍

查看答案和解析>>

同步練習(xí)冊答案