選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
)
,若直線l過點(diǎn)P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
(1)寫出直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.
分析:(1)設(shè)直線l上動(dòng)點(diǎn)坐標(biāo)為Q(x,y),利用傾斜角與斜率的公式建立關(guān)系式得到x、y關(guān)于t的方程組,即可得到直線l的參數(shù)方程;由圓的性質(zhì)和極坐標(biāo)的定義,利用題中數(shù)據(jù)可得圓C的極坐標(biāo)方程;
(2)將直線l與圓C都化成直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式加以計(jì)算,得到圓心到直線的距離比圓C半徑大,從而得到直線l和圓C的位置關(guān)系.
解答:解:(1)∵直線l過點(diǎn)P(1,-5),傾斜角為
π
3
,
∴設(shè)l上動(dòng)點(diǎn)坐標(biāo)為Q(x,y),則
y+5
x-1
=tan
π
3
=
sin
π
3
cos
π
3
,
因此,設(shè)y+5=tsin
π
3
=
3
2
t,x-1=tcos
π
3
=
1
2
t

得直線l的參數(shù)方程為
y=-5+
3
2
t
x=1+
1
2
t
(t為參數(shù)).
∵圓C以M(4,
π
2
)
為圓心、4為半徑,
∴圓C的極坐標(biāo)方程為ρ=4sinθ.
(2)將直線l化成普通方程,得
3
x-y-5-
3
=0
,
圓C化成直角坐標(biāo)方程,可得x2+(y-2)2=4,
可得圓心C的坐標(biāo)為(0,2),半徑r=2
∵點(diǎn)C到直線l的距離d=
|-2-5-
3
|
1+3
=
1
2
(7+
3
)
>r,
∴直線l和圓C相離.
點(diǎn)評:本題給出直線的參數(shù)方程和圓的極坐標(biāo)方程,判斷直線與圓的位置關(guān)系,著重考查了直線的參數(shù)方程、圓的極坐標(biāo)方程和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標(biāo)系xoy 的O點(diǎn)為極點(diǎn),Ox為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
π
4
).直線l與曲線C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點(diǎn)E,∠BAC的平分線與BC
交于點(diǎn)D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點(diǎn).A,B,C,求線段AB的長.
D.選修4-5:不等式選講
對于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xoy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn),已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:
坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
在以0為原點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點(diǎn)為A,ι與C2除極點(diǎn)外的一個(gè)交點(diǎn)為B.當(dāng)α=0時(shí),|AB|=4.
(1)求C1,C2的直角坐標(biāo)方程;
(2)若過點(diǎn)P(1,0)且斜率為
3
的直線m與曲線C1交于D、E兩點(diǎn),求|PD|與|PE|差的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•晉中三模)選修4-4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系xoy中,曲線c1的參數(shù)方程為:
x=2cosθ
y=2sinθ
(θ為參數(shù)),把曲線c1上所有點(diǎn)的縱坐標(biāo)壓縮為原來的一半得到曲線c2,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
2
ρcos(θ-
π
4
)=4

(1)求曲線c2的普通方程,并指明曲線類型;
(2)過(1,0)點(diǎn)與l垂直的直線l1與曲線c2相交與A、B兩點(diǎn),求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案