解關于x的不等式x2-4ax+3a2<0(其中a∈R).
考點:一元二次不等式的解法
專題:不等式的解法及應用
分析:利用十字相乘法,我們可將不等式化為(x-3a)(x-a)<0,分a>0,a<0,a=0三種情況分別求出不等式的解集,即可得到答案.
解答: 解:∵x2-4ax+3a2=(x-3a)(x-a)<0
當a>0時,3a>a,
則不等式x2-4ax+3a2<0的解集為:{x|a<x<3a}
當a<0時,3a<a
則不等式x2-4ax+3a2<0的解集為:{x|3a<x<a}
當a=0時,不等式x2-4ax+3a2<0的解集為∅
點評:本題考查的知識點是一元二次不等式的解法,由于a的符號不能確定,故要對a的取值,進行分類討論,解答時,易忽略a=0的情況,而只討論兩種情況.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,有a4+a8=a5+a7,類比上述性質(zhì),在等比數(shù)列{bn}中,有( 。
A、b4+b8=b5+b7
B、b4b8=b5b7
C、b4b5=b7b8
D、b4b7=b5b8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+
1
2
x+
1
4
(a
為實數(shù)),若函數(shù)f(x)的值域為[0,+∞).
(1)求f(x)的解析式;
(2)求x∈(-3,2]時函數(shù)f(x)的值域;
(3)當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:(1+
1
n
)
n
+(1+
2
n
)
n
+…+(1+
n
n
)
n
e-en+1
1-e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某海濱浴場的海浪高度y(米)是時間t(0≤t≤24,單位:小時)的函數(shù),記作y=f(t),如表所示是某日各時的浪高數(shù)據(jù):
t(時)03691215182124
y(米)1.51.00.51.01.51.00.50.991.5
經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Asin(ωt+φ)+B(A>0,ω>0,0<φ<π)試根據(jù)以上數(shù)據(jù)解答下列問題:
(1)求函數(shù)f(t)的解析式;
(2)設函數(shù)g(t)=f(kt+3)(k<0),其最小正周期為T=3,求實數(shù)k的值,并計算g(
3
8
)+g(1)+g(3)的值;
(3)在(2)的條件下,當t∈[1,
21
8
)時,求函數(shù)g(t)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求使f(x)=sin(2x+θ)+
3
cos(2x+θ)是奇函數(shù),且在[0,
π
4
]上是減函數(shù)的所有θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
i
,
j
分別是方向與x軸正方向,y軸正方向相同的單位向量,設
a
=(x2+x+1)
i
-(x2-x+1)
j
,則向量
a
位于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線AB的斜率是
3
,將直線AB繞A點按逆時針方向旋轉(zhuǎn)45°后,所得直線的傾斜角是( 。
A、105°B、15°
C、75°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知sinA=3cosBcosC,tanBtanC=2,則tan(B+C)的值
 

查看答案和解析>>

同步練習冊答案