【題目】在邊長為4的正方形的邊上有一點沿著折線由點(起點)向點(終點)運動。設(shè)點運動的路程為,的面積為,且之間的函數(shù)關(guān)系式用如圖所示的程序框圖給出.

(1)寫出框圖中①、②、③處應(yīng)填充的式子;

(2)若輸出的面積值為6,則路程的值為多少?并指出此時點在正方形的什么位置上?

【答案】(1);(2)當(dāng)時,點在正方形的上;當(dāng)時,點在正方形的上.

【解析】試題分析:(1)先求出定義域,然后根據(jù)點P的位置進行分類討論,根據(jù)三角形的面積公式求出每一段△ABP的面積與P移動的路程間的函數(shù)關(guān)系式,最后用分段函數(shù)進行表示即可寫出框圖中、處應(yīng)填充的式子;(2)利用△APB的面積為6,結(jié)合函數(shù)解析式,建立等式,即可求x的取值,進而得出此時點P的在正方形的什么位置上

試題解析:(1)由于x=0x=12時,三點A、B、P不能構(gòu)成三角形,故這個函數(shù)的

定義域為(012).

當(dāng)0x≤4時,S=fx=4x=2x;

當(dāng)4x≤8時,S=fx=8;

當(dāng)8x12時,S=fx=412﹣x=212﹣x=24﹣2x

這個函數(shù)的解析式為fx=,

框圖中、、處應(yīng)填充的式子分別為:y=2x,y=8,y=24﹣2x

2)若輸出的面積y值為6,則

當(dāng)0x≤4時,2x=6,∴x=3;

當(dāng)8x12時,S=24﹣2x=6∴x=9,

綜上,當(dāng)x=3時,此時點P的在正方形的邊BC上,當(dāng)x=9時,此時點P的在正方形的邊DA上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)在ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣sinA)cosB=0.

(1)求角B的大小; (2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x|x﹣a|(其中a∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值為﹣1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)通過()中的方程,求出y關(guān)于x的回歸方程;

(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓短軸端點和兩個焦點的連線構(gòu)成正方形,且該正方形的內(nèi)切圓方程為.

(1)求橢圓的方程;

(2)若拋物線的焦點與橢圓的一個焦點重合,直線與拋物線交于兩點,且,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級期末考試的學(xué)生中抽出40名學(xué)生,將其成績(均為整數(shù))分成六段后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,并補全頻率分布直方圖;

(2)估計這次考試的及格率(60分及以上為及格)和平均分;

(3)從成績是~分及~分的學(xué)生中選兩人,記他們的成績?yōu)?/span>,求滿足“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù), ),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(Ⅰ)討論直線與圓的公共點個數(shù);

(Ⅱ)過極點作直線的垂線,垂足為,求點的軌跡與圓相交所得弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)擬建立一個藝術(shù)博物館,采取競標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標(biāo).現(xiàn)從建筑設(shè)計院聘請專家設(shè)計了一個招標(biāo)方案:兩家公司從個招標(biāo)問題中隨機抽取個問題,已知這個招標(biāo)問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.

(1)求甲、乙兩家公司共答對道題目的概率;

(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標(biāo)成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率.

(1)求橢圓的方程;

(2)點在橢圓上,若點與點關(guān)于原點對稱,連接并延長與橢圓的另一個交點為,連接,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案