在閉區(qū)間[-2,2]上隨機(jī)的取兩個(gè)實(shí)數(shù)a和b,則使得關(guān)于x的二次方程ax2-bx+a=0有實(shí)數(shù)根的概率是
 
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:該概型為幾何概型,作出不等式組對(duì)應(yīng)的平面區(qū)域,利用幾何概型的概率公式求出相應(yīng)的面積即可得到結(jié)論.
解答: 解:在閉區(qū)間[-2,2]上隨機(jī)的取兩個(gè)實(shí)數(shù)a和b,
則-2<a<2且-2<b<2,對(duì)應(yīng)的區(qū)域?yàn)檎叫危?br />面積S=4×4=16,
關(guān)于x的二次方程ax2-bx+a=0有實(shí)數(shù)根,則△=b2-4a2≥0,(a≠0)
即b2≥4a2,∴(b-2a)(b+2a)≥0,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖兩個(gè)三角形及內(nèi)部,
則它們的面積之和為
1
2
×2×2×2
=4,
則由幾何概型的概率公式可得關(guān)于x的二次方程
ax2-bx+a=0有實(shí)數(shù)根的概率為
4
16
=
1
4

故答案為:
1
4
點(diǎn)評(píng):本題主要考查概率的計(jì)算,根據(jù)幾何概型的概率公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:y=2x-2,l2:y=λx+1,且l1∥l2,則實(shí)數(shù)λ的值是(  )
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log65+log6
1
5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinωxcosωx+
3
cos2ωx+a,(其中ω>0,a∈R).
(1)若函數(shù)g(x)=f(x)-
3
2
-a的圖象與直線y=1的相鄰的兩個(gè)公共點(diǎn)的距離為2,求ω的值;
(2)若函數(shù)f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
π
6
,且y=f(x)在區(qū)間[-
π
3
π
3
]上恰好有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知區(qū)域Dn
x>0
y≥0
y≤-2nx+6n
(n∈N*)內(nèi)的整點(diǎn)(橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn))的個(gè)數(shù)為an,則
9
a1a2
+
9
a2a3
+…+
9
a8a9
+
9
a9a10
=( 。
A、
10
21
B、
20
21
C、
1
7
D、
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:
(1)零向量的模為0;
(2)550°為第二象限的角;
(3)y=sinx的對(duì)稱中心為(
π
2
+kπ,0)
;
(4)y=sinx的圖象向右平移
π
2
個(gè)單位后得到一個(gè)奇函數(shù);
(5)與40°終邊相同的角的集合可以寫成{α|α=40°+kπ,k∈z}
其中正確命題的編號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(mx+1)(lnx-1).
(1)若m=1,求曲線y=f(x)在x=1的切線方程;
(2)若函數(shù)f(x)在(0,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)設(shè)點(diǎn)P(m,0),A(x1,f(x1)),B(x2,f(x2))滿足lnx1•lnx2=ln(x1•x2)(x1≠x2),
判斷是否存在實(shí)數(shù)m,使得∠APB為直角?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}中,a1=a,{bn}是公比為
2
3
的等比數(shù)列.記bn=
an-2
an-1
(n∈N*),若不等式an>an+1對(duì)一切n∈N*恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①定義在R上函數(shù)f(x)滿足f(2)>f(1),則f(x)是R上的增函數(shù);
②定義在R上函數(shù)f(x)滿足f(2)>f(1),則f(x)在R上不是減函數(shù);
③定義在R上函數(shù)f(x)在(-∞,0]是增函數(shù),在[0,+∞)上也是增函數(shù),則f(x)在R上單調(diào)遞增;
④定義在R上函數(shù)f(x)在(-∞,0)是增函數(shù),在[0,+∞)上也是增函數(shù),則f(x)在R上單調(diào)遞增;
以上說法正確的(  )
A、②③B、②④C、③④D、②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案