【題目】如圖,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,點(diǎn)M,N分別為A′B和B′C′的中點(diǎn).
(1)證明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C為直二面角,求λ的值.
【答案】(1)見解析(2)λ.
【解析】
(1)法一:連接AB′、AC′,根據(jù)M為AB′中點(diǎn),N為B′C′的中點(diǎn),在中可知MN∥AC′,又MN平面A′ACC′,所以MN∥平面A′ACC′;法二:取A′B′的中點(diǎn)P,連接MP、NP,根據(jù)兩條相交中位線易證明平面MPN∥平面A′ACC′,從而MN∥平面A′ACC′;
(2)以A為坐標(biāo)原點(diǎn),分別以直線AB、AC、AA′為x,y,z軸,建立直角坐標(biāo)系,寫出點(diǎn)的坐標(biāo)即可求解.
(1)證明:法一:連接AB′、AC′,
由已知∠BAC=90°,AB=AC,
三棱柱ABC﹣A′B′C′為直三棱柱,
所以M為AB′中點(diǎn),
又因?yàn)?/span>N為B′C′的中點(diǎn),
所以MN∥AC′,
又MN平面A′ACC′,平面,
因此MN∥平面A′ACC′;
法二:取A′B′的中點(diǎn)P,連接MP、NP,
M、N分別為A′B、B′C′的中點(diǎn),
所以MP∥AA′,平面,平面,所以MP∥平面A′ACC′,
同理可得PN∥平面A′ACC′,
又MP∩NP=P,因此平面MPN∥平面A′ACC′,
而MN平面MPN,因此MN∥平面A′ACC′.
(2)以A為坐標(biāo)原點(diǎn),分別以直線AB、AC、AA′為x,y,z軸,建立直角坐標(biāo)系,如圖,
設(shè)AA′=1,則AB=AC=λ,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1).
所以M(),N(),
設(shè)(x1,y1,z1)是平面A′MN的法向量,,,
由,得,可取,
設(shè)(x2,y2,z2)是平面MNC的法向量,,
由,得,可取,
因?yàn)槎娼?/span>A'﹣MN﹣C為直二面角,
所以,即﹣3+(﹣1)×(﹣1)+λ2=0,解得λ.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)求函數(shù)在上的最值;
(3)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求的值及函數(shù)的極值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列對任意的,都有,且,則稱數(shù)列為“k級創(chuàng)新數(shù)列”.
(1)已知數(shù)列滿足且,試判斷數(shù)列是否為“2級創(chuàng)新數(shù)列”,并說明理由;
(2)已知正數(shù)數(shù)列為“k級創(chuàng)新數(shù)列”且,若,求數(shù)列的前n項(xiàng)積;
(3)設(shè),是方程的兩個(gè)實(shí)根,令,在(2)的條件下,記數(shù)列的通項(xiàng),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)使不等式對任意,恒成立時(shí)最大的記為,求當(dāng)時(shí),的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中.
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)在處存在極值-1,且時(shí),恒成立,求實(shí)數(shù)的最大整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,設(shè)的內(nèi)切圓分別與邊相切于點(diǎn),已知,記動點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)過的直線與軸正半軸交于點(diǎn),與曲線E交于點(diǎn)軸,過的另一直線與曲線交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(Ⅰ)求,的值;
(Ⅱ)當(dāng)時(shí),若為整數(shù),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)在內(nèi)單調(diào)遞增;
(2)記為函數(shù)的反函數(shù).若關(guān)于的方程在上有解,求的取值范圍;
(3)若對于恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com