精英家教網(wǎng)如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,過點(diǎn)O的直線交AD于E,BC于F,交AB延長(zhǎng)線于G,已知AB=a,BC=b,BG=c,則BF=
 
分析:根據(jù)兩條直線平行,得到三角形相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例,得到一系列比例式,根據(jù)三角形全等,得到邊長(zhǎng)相等,利用等量代換變化出要求的量,根據(jù)方程思想,得到結(jié)果.
解答:解:∵BF∥AE
BG
AG
=
BF
AE
=
BF
AD-BF
=
BF
BC-BF
,
c
a+c
=
BF
c-BF
,
BF=
bc
a+2c

故答案為:
bc
a+2c
點(diǎn)評(píng):本題考查三角形相似對(duì)應(yīng)邊成比例,考查等量代換思想,考查方程思想的應(yīng)用,是一個(gè)比較典型的題目,本題是平面幾何中常見的類型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,∠DAB=60°,AB=2,AD=4將△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.
(I)求證:AB⊥DE
(Ⅱ)求三棱錐E-ABD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,E,F(xiàn)分別是BC,DC的中點(diǎn),G為交點(diǎn),若
AB
=
a
,
AD
=
b
,試以
a
,
b
為基底表示
CG
=
-
1
3
(
a
+
b
)
-
1
3
(
a
+
b
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)如圖,平行四邊形ABCD中,點(diǎn)E是邊BC(靠近點(diǎn)B)的三等分點(diǎn),F(xiàn)是AB(靠近點(diǎn)A)的三等分點(diǎn),P是AE與DF的交點(diǎn),則
AP
AB
,
AD
表示為
AP
=
3
10
AB
+
1
10
AD
AP
=
3
10
AB
+
1
10
AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,
AB
=
a
,
AD
=
b
,
CE
=
1
3
CB
CF
=
2
3
CD

(1)用
a
,
b
表示
EF
;
(2)若|
a
|=1
,|
b
|=4
,∠DAB=60°,分別求|
EF
|
AC
FE
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案