【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是(
A.2
B.3
C.
D.

【答案】B
【解析】解:設(shè)直線AB的方程為:x=ty+m,點(diǎn)A(x1 , y1),B(x2 , y2), 直線AB與x軸的交點(diǎn)為M(m,0),
y2﹣ty﹣m=0,根據(jù)韋達(dá)定理有y1y2=﹣m,
=2,∴x1x2+y1y2=2,
結(jié)合 ,得 ,
∵點(diǎn)A,B位于x軸的兩側(cè),∴y1y2=﹣2,故m=2.
不妨令點(diǎn)A在x軸上方,則y1>0,又
∴SABO+SAFO ×2×(y1﹣y2)+ × y1 ,
=
當(dāng)且僅當(dāng) ,即 時(shí),取“=”號(hào),
∴△ABO與△AFO面積之和的最小值是3,故選B.

可先設(shè)直線方程和點(diǎn)的坐標(biāo),聯(lián)立直線與拋物線的方程得到一個(gè)一元二次方程,再利用韋達(dá)定理及 =2消元,最后將面積之和表示出來,探求最值問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求證:
(1)數(shù)列{an+2n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是(
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)一批產(chǎn)品的長度(單位:mm)進(jìn)行抽樣檢測(cè),下圖為檢測(cè)結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取一件,則其為二等品的概率為(
A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=2,CC1= ,則異面直線AB1和BC1所成角的正弦值為(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,已知△A′DE(A′平面ABC)是△ADE繞DE旋轉(zhuǎn)過程中的一個(gè)圖形,有下列命題: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱錐A′﹣DEF的體積最大值為 a3
④動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上;
⑤二面角A′﹣DE﹣F大小的范圍是[0, ].
其中正確的命題是(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C: + =1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn)、上頂點(diǎn)分別為點(diǎn)A、B,且|AB|= |BF|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若斜率為2的直線l過點(diǎn)(0,2),且l交橢圓C于P、Q兩點(diǎn),OP⊥OQ.求直線l的方程及橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求證:
(2)設(shè)c=(0,1),若 + =c,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , , 是同一平面內(nèi)的三個(gè)向量,其中 =(﹣ ,1).
(1)若| |=2 且 ,求 的坐標(biāo);
(2)若| |= ,( +3 )⊥( ),求向量 的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案