A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{2\sqrt{6}}{3}$ |
分析 求得雙曲線的a,b,c,可得焦點坐標和一條漸近線方程,設(shè)P(m,$\sqrt{2}$m),運用向量的數(shù)量積的坐標表示,解方程可得m,進而求得P到x軸的距離.
解答 解:雙曲線C:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的a=$\sqrt{2}$,b=2,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{6}$,
即有F1(-$\sqrt{6}$,0),F(xiàn)2($\sqrt{6}$,0),
設(shè)漸近線l的方程為y=$\sqrt{2}$x,且P(m,$\sqrt{2}$m),
$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-$\sqrt{6}$-m,-$\sqrt{2}$m)•($\sqrt{6}$-m,-$\sqrt{2}$m)
=(-$\sqrt{6}$-m)($\sqrt{6}$-m)+(-$\sqrt{2}$m)2=0,
化為3m2-6=0,
解得m=±$\sqrt{2}$,
則P到x軸的距離為$\sqrt{2}$|m|=2.
故選:C.
點評 本題考查雙曲線的方程和性質(zhì),主要是焦點和漸近線方程的運用,考查向量的數(shù)量積的坐標表示,以及化簡運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{5}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{5\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或$\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{6}$或$\frac{{2\sqrt{3}}}{3}$ | C. | 2或$\sqrt{3}$ | D. | $\sqrt{3}$或$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{17}{15}$ | B. | $\frac{15}{17}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | 4 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com